Goto

Collaborating Authors

 Smit, Andries


Mava: a research library for distributed multi-agent reinforcement learning in JAX

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) research is inherently computationally expensive and it is often difficult to obtain a sufficient number of experiment samples to test hypotheses and make robust statistical claims. Furthermore, MARL algorithms are typically complex in their design and can be tricky to implement correctly. These aspects of MARL present a difficult challenge when it comes to creating useful software for advanced research. Our criteria for such software is that it should be simple enough to use to implement new ideas quickly, while at the same time be scalable and fast enough to test those ideas in a reasonable amount of time. In this preliminary technical report, we introduce Mava, a research library for MARL written purely in JAX, that aims to fulfill these criteria. We discuss the design and core features of Mava, and demonstrate its use and performance across a variety of environments. In particular, we show Mava's substantial speed advantage, with improvements of 10-100x compared to other popular MARL frameworks, while maintaining strong performance. This allows for researchers to test ideas in a few minutes instead of several hours. Finally, Mava forms part of an ecosystem of libraries that seamlessly integrate with each other to help facilitate advanced research in MARL. We hope Mava will benefit the community and help drive scientifically sound and statistically robust research in the field. The open-source repository for Mava is available at https://github.com/instadeepai/Mava.


Are we going MAD? Benchmarking Multi-Agent Debate between Language Models for Medical Q&A

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) underscore their potential for responding to medical inquiries. However, ensuring that generative agents provide accurate and reliable answers remains an ongoing challenge. In this context, multi-agent debate (MAD) has emerged as a prominent strategy for enhancing the truthfulness of LLMs. In this work, we provide a comprehensive benchmark of MAD strategies for medical Q&A, along with open-source implementations. This explores the effective utilization of various strategies including the trade-offs between cost, time, and accuracy. We build upon these insights to provide a novel debate-prompting strategy based on agent agreement that outperforms previously published strategies on medical Q&A tasks.