Goto

Collaborating Authors

 Slijepcevic, Djordje


Explaining YOLO: Leveraging Grad-CAM to Explain Object Detections

arXiv.org Artificial Intelligence

We investigate the problem of explainability for visual object detectors. Specifically, we demonstrate on the example of the YOLO object detector how to integrate Grad-CAM into the model architecture and analyze the results. We show how to compute attribution-based explanations for individual detections and find that the normalization of the results has a great impact on their interpretation.


Explaining automated gender classification of human gait

arXiv.org Artificial Intelligence

State-of-the-art machine learning (ML) models are highly effective in classifying gait analysis data, however, they lack in providing explanations for their predictions. This "black-box" characteristic makes it impossible to understand on which input patterns, ML models base their predictions. The present study investigates whether Explainable Artificial Intelligence methods, i.e., Layer-wise Relevance Propagation (LRP), can be useful to enhance the explainability of ML predictions in gait classification. The research question was: Which input patterns are most relevant for an automated gender classification model and do they correspond to characteristics identified in the literature? We utilized a subset of the GAITREC dataset containing five bilateral ground reaction force (GRF) recordings per person during barefoot walking of 62 healthy participants: 34 females and 28 males. Each input signal (right and left side) was min-max normalized before concatenation and fed into a multi-layer Convolutional Neural Network (CNN). The classification accuracy was obtained over a stratified ten-fold cross-validation. To identify gender-specific patterns, the input relevance scores were derived using LRP. The mean classification accuracy of the CNN with 83.3% showed a clear superiority over the zero-rule baseline of 54.8%.


Explaining machine learning models for age classification in human gait analysis

arXiv.org Artificial Intelligence

Machine learning (ML) models have proven effective in classifying gait analysis data, e.g., binary classification of young vs. older adults. ML models, however, lack in providing human understandable explanations for their predictions. This "black-box" behavior impedes the understanding of which input features the model predictions are based on. We investigated an Explainable Artificial Intelligence method, i.e., Layer-wise Relevance Propagation (LRP), for gait analysis data. The research question was: Which input features are used by ML models to classify age-related differences in walking patterns? We utilized a subset of the AIST Gait Database 2019 containing five bilateral ground reaction force (GRF) recordings per person during barefoot walking of healthy participants. Each input signal was min-max normalized before concatenation and fed into a Convolutional Neural Network (CNN). Participants were divided into three age groups: young (20-39 years), middle-aged (40-64 years), and older (65-79 years) adults. The classification accuracy and relevance scores (derived using LRP) were averaged over a stratified ten-fold cross-validation. The mean classification accuracy of 60.1% was clearly higher than the zero-rule baseline of 37.3%. The confusion matrix shows that the CNN distinguished younger and older adults well, but had difficulty modeling the middle-aged adults.


Bounded logit attention: Learning to explain image classifiers

arXiv.org Artificial Intelligence

Explainable artificial intelligence is the attempt to elucidate the workings of systems too complex to be directly accessible to human cognition through suitable sideinformation referred to as "explanations". We present a trainable explanation module for convolutional image classifiers we call bounded logit attention (BLA). The BLA module learns to select a subset of the convolutional feature map for each input instance, which then serves as an explanation for the classifier's prediction. BLA overcomes several limitations of the instancewise feature selection method "learning to explain" (L2X) introduced by Chen et al. (2018): 1) BLA scales to real-world sized image classification problems, and 2) BLA offers a canonical way to learn explanations of variable size. Due to its modularity BLA lends itself to transfer learning setups and can also be employed as a post-hoc add-on to trained classifiers. Beyond explainability, BLA may serve as a general purpose method for differentiable approximation of subset selection. In a user study we find that BLA explanations are preferred over explanations generated by the popular (Grad-)CAM method (Zhou et al., 2016; Selvaraju et al., 2017).