Sleeman, Derek
Report on the Fourth International Conference on Knowledge Capture (K-CAP 2007)
Sleeman, Derek (University of Aberdeen) | Barker, Ken (University of Texas) | Corsar, David (University of Aberdeen)
The Fourth International Conference on Knowledge Capture was held October 28-31, 2007 in Whistler, British Columbia. K-CAP 2007 included two invited talks, technical papers, posters, and demonstrations. Topics included knowledge engineering and modeling methodologies, knowledge engineering and the semantic web, mixed-initiative planning and decision-support tools, acquisition of problem-solving knowledge, knowledge-based markup techniques, knowledge extraction systems, knowledge acquisition tools, and advice taking systems.
Report on the Fourth International Conference on Knowledge Capture (K-CAP 2007)
Sleeman, Derek (University of Aberdeen) | Barker, Ken (University of Texas) | Corsar, David (University of Aberdeen)
The Fourth International Conference on Knowledge Capture was held October 28-31, 2007, in Whistler, British Columbia. The topics covered in the invited talks, technical papers, posters, and demonstrations included knowledge engineering and modeling methodologies, knowledge engineering and the semantic web, mixedinitiative planning and decision-support tools, acquisition of problem-solving knowledge, knowledge-based markup techniques, knowledge extraction systems, knowledge acquisition tools, and advice-taking systems. These events, which were from web-based game-playing systems. The title of his talk was "Human Ken Barker and John Gennari Derek Sleeman noted in his introductory Etzioni's invited talk and had primary responsibilities for comments, knowledge capture is gave some technical details of the systems the conference and workshop programs. In the The best technical paper Since the K-CAP series was initiated, last decade or so, knowledge capture award was presented to Kai Eckert, the K-CAP and European Knowledge has again expanded its horizons significantly Heiner Stuckenschmidt, and Magnus Acquisition Workshop (EKAW) meetings to embrace information-extraction Pfeffer for their paper "Interactive have been held in alternate years, techniques, and more recently Thesaurus Assessment for Automatic with the K-CAP meetings taking place the web and enhanced connectivity Document Annotation."
AAAI 2008 Spring Symposia Reports
Balduccini, Marcello (Eastman Kodak Company) | Baral, Chitta (Arizona State University) | Brodaric, Boyan (Geological Survey of Canada) | Colton, Simon (Imperial College, London) | Fox, Peter (National Center for Atmospheric Research) | Gutelius, David (SRI International) | Hinkelmann, Knut (University of Applied Sciences Northwestern Switzerland) | Horswill, Ian (Northwestern University) | Huberman, Bernardo (HP Labs) | Hudlicka, Eva (Psychometrix Associates) | Lerman, Kristina (USC Information Sciences Institute) | Lisetti, Christine (Florida International University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Maher, Mary Lou (National Science Foundation) | Musen, Mark A. (Stanford University) | Sahami, Mehran (Stanford University) | Sleeman, Derek (University of Aberdeen) | Thรถnssen, Barbara (University of Applied Sciences Northwestern Switzerland) | Velasquez, Juan D. (MIT CSAIL) | Ventura, Dan (Brigham Young University)
The titles of the eight symposia were as follows: (1) AI Meets Business Rules and Process Management, (2) Architectures for Intelligent Theory-Based Agents, (3) Creative Intelligent Systems, (4) Emotion, Personality, and Social Behavior, (5) Semantic Scientific Knowledge Integration, (6) Social Information Processing, (7) Symbiotic Relationships between Semantic Web and Knowledge Engineering, (8) Using AI to Motivate Greater Participation in Computer Science The goal of the AI Meets Business Rules and Process Management AAAI symposium was to investigate the various approaches and standards to represent business rules, business process management and the semantic web with respect to expressiveness and reasoning capabilities. The Semantic Scientific Knowledge Symposium was interested in bringing together the semantic technologies community with the scientific information technology community in an effort to build the general semantic science information community. The Social Information Processing's goal was to investigate computational and analytic approaches that will enable users to harness the efforts of large numbers of other users to solve a variety of information processing problems, from discovering high-quality content to managing common resources. The purpose of the Using AI to Motivate Greater Participation in Computer Science symposium was to identify ways that topics in AI may be used to motivate greater student participation in computer science by highlighting fun, engaging, and intellectually challenging developments in AI-related curriculum at a number of educational levels.
AAAI 2008 Spring Symposia Reports
Balduccini, Marcello (Eastman Kodak Company) | Baral, Chitta (Arizona State University) | Brodaric, Boyan (Geological Survey of Canada) | Colton, Simon (Imperial College, London) | Fox, Peter (National Center for Atmospheric Research) | Gutelius, David (SRI International) | Hinkelmann, Knut (University of Applied Sciences Northwestern Switzerland) | Horswill, Ian (Northwestern University) | Huberman, Bernardo (HP Labs) | Hudlicka, Eva (Psychometrix Associates) | Lerman, Kristina (USC Information Sciences Institute) | Lisetti, Christine (Florida International University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Maher, Mary Lou (National Science Foundation) | Musen, Mark A. (Stanford University) | Sahami, Mehran (Stanford University) | Sleeman, Derek (University of Aberdeen) | Thรถnssen, Barbara (University of Applied Sciences Northwestern Switzerland) | Velasquez, Juan D. (MIT CSAIL) | Ventura, Dan (Brigham Young University)
The Association for the Advancement of Artificial Intelligence (AAAI) was pleased to present the AAAI 2008 Spring Symposium Series, held Wednesday through Friday, March 26โ28, 2008 at Stanford University, California. The titles of the eight symposia were as follows: (1) AI Meets Business Rules and Process Management, (2) Architectures for Intelligent Theory-Based Agents, (3) Creative Intelligent Systems, (4) Emotion, Personality, and Social Behavior, (5) Semantic Scientific Knowledge Integration, (6) Social Information Processing, (7) Symbiotic Relationships between Semantic Web and Knowledge Engineering, (8) Using AI to Motivate Greater Participation in Computer Science The goal of the AI Meets Business Rules and Process Management AAAI symposium was to investigate the various approaches and standards to represent business rules, business process management and the semantic web with respect to expressiveness and reasoning capabilities. The focus of the Architectures for Intelligent Theory-Based Agents AAAI symposium was the definition of architectures for intelligent theory-based agents, comprising languages, knowledge representation methodologies, reasoning algorithms, and control loops. The Creative Intelligent Systems Symposium included five major discussion sessions and a general poster session (in which all contributing papers were presented). The purpose of this symposium was to explore the synergies between creative cognition and intelligent systems. The goal of the Emotion, Personality, and Social Behavior symposium was to examine fundamental issues in affect and personality in both biological and artificial agents, focusing on the roles of these factors in mediating social behavior. The Semantic Scientific Knowledge Symposium was interested in bringing together the semantic technologies community with the scientific information technology community in an effort to build the general semantic science information community. The Social Information Processing's goal was to investigate computational and analytic approaches that will enable users to harness the efforts of large numbers of other users to solve a variety of information processing problems, from discovering high-quality content to managing common resources. The goal of the Symbiotic Relationships between the Semantic Web and Software Engineering symposium was to explore how the lessons learned by the knowledge-engineering community over the past three decades could be applied to the bold research agenda of current workers in semantic web technologies. The purpose of the Using AI to Motivate Greater Participation in Computer Science symposium was to identify ways that topics in AI may be used to motivate greater student participation in computer science by highlighting fun, engaging, and intellectually challenging developments in AI-related curriculum at a number of educational levels. Technical reports of the symposia were published by AAAI Press.
Learning from Solution Paths: An Approach to the Credit Assignment Problem
Sleeman, Derek, Langley, Pat, Mitchell, Tom M.
In this article we discuss a method for learning useful conditions on the application of operators during heuristic search. Since learning is not attempted until a complete solution path has been found for a problem, credit for correct moves and blame for incorrect moves is easily assigned. We review four learning systems that have incorporated similar techniques to learn in the domains of algebra, symbolic integration, and puzzle-solving. We conclude that the basic approach of learning from solution paths can be applied to any situation in which problems can be solved by sequential search.
Artificial Intelligence Techniques and Methodology
Carbonell, Jaime G., Sleeman, Derek
Two closely related aspects of artificial intelligence that have received comparatively little attention in the recent literature are research methodology, and the analysis of computational techniques that span multiple application areas. We believe both issues to be increasingly significant as Artificial Intelligence matures into a science and spins off major application efforts. Similarly, awareness of research methodology issues can help plan future research buy learning from past successes and failures. We view the study of research methodology to be similar to the analysis of operational AI techniques, but at a meta-level; that is, research methodology analyzes the techniques and methods used by the researchers themselves, rather than their programs, to resolve issues of selecting interesting and tractable problems to investigate, and of deciding how to proceed with their investigations.
Artificial Intelligence Techniques and Methodology
Carbonell, Jaime G., Sleeman, Derek
Two closely related aspects of artificial intelligence that have received comparatively little attention in the recent literature are research methodology, and the analysis of computational techniques that span multiple application areas. We believe both issues to be increasingly significant as Artificial Intelligence matures into a science and spins off major application efforts. It is imperative to analyze the repertoire of AI methods with respect to past experience, utility in new domains, extensibility, and functional equivalence with other techniques, if AI is to become more effective in building upon prior results rather than continually reinventing the proverbial wheel. Similarly, awareness of research methodology issues can help plan future research buy learning from past successes and failures. We view the study of research methodology to be similar to the analysis of operational AI techniques, but at a meta-level ; that is, research methodology analyzes the techniques and methods used by the researchers themselves, rather than their programs, to resolve issues of selecting interesting and tractable problems to investigate, and of deciding how to proceed with their investigations. A public articulation of methodological issues that typically remain implicit in the literature may provide some helpful orientation for new researchers and broaden the perspective of many AI practitioners.
Learning from Solution Paths: An Approach to the Credit Assignment Problem
Sleeman, Derek, Langley, Pat, Mitchell, Tom M.
In this article we discuss a method for learning useful conditions on the application of operators during heuristic search. Since learning is not attempted until a complete solution path has been found for a problem, credit for correct moves and blame for incorrect moves is easily assigned. We review four learning systems that have incorporated similar techniques to learn in the domains of algebra, symbolic integration, and puzzle-solving. We conclude that the basic approach of learning from solution paths can be applied to any situation in which problems can be solved by sequential search. Finally, we examine some potential difficulties that may arise in more complex domains, and suggest some possible extensions for dealing with them.