Goto

Collaborating Authors

 Slaney, Malcolm


Disentangling speech from surroundings with neural embeddings

arXiv.org Artificial Intelligence

We present a method to separate speech signals from noisy environments in the embedding space of a neural audio codec. We introduce a new training procedure that allows our model to produce structured encodings of audio waveforms given by embedding vectors, where one part of the embedding vector represents the speech signal, and the rest represent the environment. We achieve this by partitioning the embeddings of different input waveforms and training the model to faithfully reconstruct audio from mixed partitions, thereby ensuring each partition encodes a separate audio attribute. As use cases, we demonstrate the separation of speech from background noise or from reverberation characteristics. Our method also allows for targeted adjustments of the audio output characteristics.


Neural Architecture Search for Energy Efficient Always-on Audio Models

arXiv.org Artificial Intelligence

Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches (NAS) that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early-stopping to reduce the computational burden. Our search, evaluated on a sound-event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.


CNN Architectures for Large-Scale Audio Classification

arXiv.org Machine Learning

Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio classification task, and larger training and label sets help up to a point. A model using embeddings from these classifiers does much better than raw features on the Audio Set [5] Acoustic Event Detection (AED) classification task.


Collaborative Filtering and the Missing at Random Assumption

arXiv.org Machine Learning

Rating prediction is an important application, and a popular research topic in collaborative filtering. However, both the validity of learning algorithms, and the validity of standard testing procedures rest on the assumption that missing ratings are missing at random (MAR). In this paper we present the results of a user study in which we collect a random sample of ratings from current users of an online radio service. An analysis of the rating data collected in the study shows that the sample of random ratings has markedly different properties than ratings of user-selected songs. When asked to report on their own rating behaviour, a large number of users indicate they believe their opinion of a song does affect whether they choose to rate that song, a violation of the MAR condition. Finally, we present experimental results showing that incorporating an explicit model of the missing data mechanism can lead to significant improvements in prediction performance on the random sample of ratings.


FaceSync: A Linear Operator for Measuring Synchronization of Video Facial Images and Audio Tracks

Neural Information Processing Systems

FaceSync is an optimal linear algorithm that finds the degree of synchronization between the audio and image recordings of a human speaker. Using canonical correlation, it finds the best direction to combine all the audio and image data, projecting them onto a single axis. FaceSync uses Pearson's correlation to measure the degree of synchronization between the audio and image data. We derive the optimal linear transform to combine the audio and visual information and describe an implementation that avoids the numerical problems caused by computing the correlation matrices.


FaceSync: A Linear Operator for Measuring Synchronization of Video Facial Images and Audio Tracks

Neural Information Processing Systems

FaceSync is an optimal linear algorithm that finds the degree of synchronization betweenthe audio and image recordings of a human speaker. Using canonical correlation, it finds the best direction to combine allthe audio and image data, projecting them onto a single axis. FaceSync uses Pearson's correlation to measure the degree of synchronization betweenthe audio and image data. We derive the optimal linear transform to combine the audio and visual information and describe an implementation that avoids the numerical problems caused by computing thecorrelation matrices.