Slama, Rim
Online hand gesture recognition using Continual Graph Transformers
Slama, Rim, Rabah, Wael, Wannous, Hazem
Online continuous action recognition has emerged as a critical research area due to its practical implications in real-world applications, such as human-computer interaction, healthcare, and robotics. Among various modalities, skeleton-based approaches have gained significant popularity, demonstrating their effectiveness in capturing 3D temporal data while ensuring robustness to environmental variations. However, most existing works focus on segment-based recognition, making them unsuitable for real-time, continuous recognition scenarios. In this paper, we propose a novel online recognition system designed for real-time skeleton sequence streaming. Our approach leverages a hybrid architecture combining Spatial Graph Convolutional Networks (S-GCN) for spatial feature extraction and a Transformer-based Graph Encoder (TGE) for capturing temporal dependencies across frames. Additionally, we introduce a continual learning mechanism to enhance model adaptability to evolving data distributions, ensuring robust recognition in dynamic environments. We evaluate our method on the SHREC'21 benchmark dataset, demonstrating its superior performance in online hand gesture recognition. Our approach not only achieves state-of-the-art accuracy but also significantly reduces false positive rates, making it a compelling solution for real-time applications. The proposed system can be seamlessly integrated into various domains, including human-robot collaboration and assistive technologies, where natural and intuitive interaction is crucial.
CG-MER: A Card Game-based Multimodal dataset for Emotion Recognition
Farhat, Nessrine, Bohi, Amine, Letaifa, Leila Ben, Slama, Rim
The field of affective computing has seen significant advancements in exploring the relationship between emotions and emerging technologies. This paper presents a novel and valuable contribution to this field with the introduction of a comprehensive French multimodal dataset designed specifically for emotion recognition. The dataset encompasses three primary modalities: facial expressions, speech, and gestures, providing a holistic perspective on emotions. Moreover, the dataset has the potential to incorporate additional modalities, such as Natural Language Processing (NLP) to expand the scope of emotion recognition research. The dataset was curated through engaging participants in card game sessions, where they were prompted to express a range of emotions while responding to diverse questions. The study included 10 sessions with 20 participants (9 females and 11 males). The dataset serves as a valuable resource for furthering research in emotion recognition and provides an avenue for exploring the intricate connections between human emotions and digital technologies.
D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on transformer for assessment of patient physical rehabilitation
Mourchid, Youssef, Slama, Rim
This paper tackles the challenge of automatically assessing physical rehabilitation exercises for patients who perform the exercises without clinician supervision. The objective is to provide a quality score to ensure correct performance and achieve desired results. To achieve this goal, a new graph-based model, the Dense Spatio-Temporal Graph Conv-GRU Network with Transformer, is introduced. This model combines a modified version of STGCN and transformer architectures for efficient handling of spatio-temporal data. The key idea is to consider skeleton data respecting its non-linear structure as a graph and detecting joints playing the main role in each rehabilitation exercise. Dense connections and GRU mechanisms are used to rapidly process large 3D skeleton inputs and effectively model temporal dynamics. The transformer encoder's attention mechanism focuses on relevant parts of the input sequence, making it useful for evaluating rehabilitation exercises. The evaluation of our proposed approach on the KIMORE and UI-PRMD datasets highlighted its potential, surpassing state-of-the-art methods in terms of accuracy and computational time. This resulted in faster and more accurate learning and assessment of rehabilitation exercises. Additionally, our model provides valuable feedback through qualitative illustrations, effectively highlighting the significance of joints in specific exercises.