Goto

Collaborating Authors

 Sivaraman, Venkatesh


Tempo: Helping Data Scientists and Domain Experts Collaboratively Specify Predictive Modeling Tasks

arXiv.org Artificial Intelligence

Temporal predictive models have the potential to improve decisions in health care, public services, and other domains, yet they often fail to effectively support decision-makers. Prior literature shows that many misalignments between model behavior and decision-makers' expectations stem from issues of model specification, namely how, when, and for whom predictions are made. However, model specifications for predictive tasks are highly technical and difficult for non-data-scientist stakeholders to interpret and critique. To address this challenge we developed Tempo, an interactive system that helps data scientists and domain experts collaboratively iterate on model specifications. Using Tempo's simple yet precise temporal query language, data scientists can quickly prototype specifications with greater transparency about pre-processing choices. Moreover, domain experts can assess performance within data subgroups to validate that models behave as expected. Through three case studies, we demonstrate how Tempo helps multidisciplinary teams quickly prune infeasible specifications and identify more promising directions to explore.


How Consistent are Clinicians? Evaluating the Predictability of Sepsis Disease Progression with Dynamics Models

arXiv.org Artificial Intelligence

Reinforcement learning (RL) is a promising approach to generate treatment policies for sepsis patients in intensive care. While retrospective evaluation metrics show decreased mortality when these policies are followed, studies with clinicians suggest their recommendations are often spurious. We propose that these shortcomings may be due to lack of diversity in observed actions and outcomes in the training data, and we construct experiments to investigate the feasibility of predicting sepsis disease severity changes due to clinician actions. Preliminary results suggest incorporating action information does not significantly improve model performance, indicating that clinician actions may not be sufficiently variable to yield measurable effects on disease progression. We discuss the implications of these findings for optimizing sepsis treatment.


TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between Corpora

arXiv.org Artificial Intelligence

Embeddings of words and concepts capture syntactic and semantic regularities of language; however, they have seen limited use as tools to study characteristics of different corpora and how they relate to one another. We introduce TextEssence, an interactive system designed to enable comparative analysis of corpora using embeddings. TextEssence includes visual, neighbor-based, and similarity-based modes of embedding analysis in a lightweight, web-based interface. We further propose a new measure of embedding confidence based on nearest neighborhood overlap, to assist in identifying high-quality embeddings for corpus analysis. A case study on COVID-19 scientific literature illustrates the utility of the system. TextEssence is available from https://github.com/drgriffis/text-essence.