Goto

Collaborating Authors

 Sivarajkumar, Sonish


Automating Adjudication of Cardiovascular Events Using Large Language Models

arXiv.org Artificial Intelligence

Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.


Mitigating the Risk of Health Inequity Exacerbated by Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in large language models have demonstrated their potential in numerous medical applications, particularly in automating clinical trial matching for translational research and enhancing medical question answering for clinical decision support. However, our study shows that incorporating non decisive sociodemographic factors such as race, sex, income level, LGBT+ status, homelessness, illiteracy, disability, and unemployment into the input of LLMs can lead to incorrect and harmful outputs for these populations. These discrepancies risk exacerbating existing health disparities if LLMs are widely adopted in healthcare. To address this issue, we introduce EquityGuard, a novel framework designed to detect and mitigate the risk of health inequities in LLM based medical applications. Our evaluation demonstrates its efficacy in promoting equitable outcomes across diverse populations.


RAG-RLRC-LaySum at BioLaySumm: Integrating Retrieval-Augmented Generation and Readability Control for Layman Summarization of Biomedical Texts

arXiv.org Artificial Intelligence

This paper introduces the RAG-RLRC-LaySum framework, designed to make complex biomedical research understandable to laymen through advanced Natural Language Processing (NLP) techniques. Our Retrieval Augmented Generation (RAG) solution, enhanced by a reranking method, utilizes multiple knowledge sources to ensure the precision and pertinence of lay summaries. Additionally, our Reinforcement Learning for Readability Control (RLRC) strategy improves readability, making scientific content comprehensible to non-specialists. Evaluations using the publicly accessible PLOS and eLife datasets show that our methods surpass Plain Gemini model, demonstrating a 20% increase in readability scores, a 15% improvement in ROUGE-2 relevance scores, and a 10% enhancement in factual accuracy. The RAG-RLRC-LaySum framework effectively democratizes scientific knowledge, enhancing public engagement with biomedical discoveries.


Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning

arXiv.org Artificial Intelligence

In this study, we utilized statistical analysis and machine learning methods to examine whether rehabilitation exercises can improve patients post-stroke functional abilities, as well as forecast the improvement in functional abilities. Our dataset is patients' rehabilitation exercises and demographic information recorded in the unstructured electronic health records (EHRs) data and free-text rehabilitation procedure notes. We collected data for 265 stroke patients from the University of Pittsburgh Medical Center. We employed a pre-existing natural language processing (NLP) algorithm to extract data on rehabilitation exercises and developed a rule-based NLP algorithm to extract Activity Measure for Post-Acute Care (AM-PAC) scores, covering basic mobility (BM) and applied cognitive (AC) domains, from procedure notes. Changes in AM-PAC scores were classified based on the minimal clinically important difference (MCID), and significance was assessed using Friedman and Wilcoxon tests. To identify impactful exercises, we used Chi-square tests, Fisher's exact tests, and logistic regression for odds ratios. Additionally, we developed five machine learning models-logistic regression (LR), Adaboost (ADB), support vector machine (SVM), gradient boosting (GB), and random forest (RF)-to predict outcomes in functional ability. Statistical analyses revealed significant associations between functional improvements and specific exercises. The RF model achieved the best performance in predicting functional outcomes. In this study, we identified three rehabilitation exercises that significantly contributed to patient post-stroke functional ability improvement in the first two months. Additionally, the successful application of a machine learning model to predict patient-specific functional outcomes underscores the potential for precision rehabilitation.


A Literature Review and Framework for Human Evaluation of Generative Large Language Models in Healthcare

arXiv.org Artificial Intelligence

As generative artificial intelligence (AI), particularly Large Language Models (LLMs), continues to permeate healthcare, it remains crucial to supplement traditional automated evaluations with human expert evaluation. Understanding and evaluating the generated texts is vital for ensuring safety, reliability, and effectiveness. However, the cumbersome, time-consuming, and non-standardized nature of human evaluation presents significant obstacles to the widespread adoption of LLMs in practice. This study reviews existing literature on human evaluation methodologies for LLMs within healthcare. We highlight a notable need for a standardized and consistent human evaluation approach. Our extensive literature search, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, spans publications from January 2018 to February 2024. This review provides a comprehensive overview of the human evaluation approaches used in diverse healthcare applications.This analysis examines the human evaluation of LLMs across various medical specialties, addressing factors such as evaluation dimensions, sample types, and sizes, the selection and recruitment of evaluators, frameworks and metrics, the evaluation process, and statistical analysis of the results. Drawing from diverse evaluation strategies highlighted in these studies, we propose a comprehensive and practical framework for human evaluation of generative LLMs, named QUEST: Quality of Information, Understanding and Reasoning, Expression Style and Persona, Safety and Harm, and Trust and Confidence. This framework aims to improve the reliability, generalizability, and applicability of human evaluation of generative LLMs in different healthcare applications by defining clear evaluation dimensions and offering detailed guidelines.


Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing

arXiv.org Artificial Intelligence

Alzheimer's Disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192,000 de-identified clinical notes of 7,266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based Natural Language Processing (NLP) algorithm, machine learning models, and Large Language Model(LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset. Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of Positive Predictive Value (PPV), rule-based NLP algorithm achieved 1.00 for daytime sleepiness and sleep duration, machine learning models: 0.95 and for napping, 0.86 for bad sleep quality and 0.90 for snoring; and LLAMA2 with finetuning achieved PPV of 0.93 for Night Wakings, 0.89 for sleep problem, and 1.00 for sleep duration. The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD, but could be extended to general sleep information extraction for other diseases.


Generation of a Compendium of Transcription Factor Cascades and Identification of Potential Therapeutic Targets using Graph Machine Learning

arXiv.org Artificial Intelligence

Transcription factors (TFs) play a vital role in the regulation of gene expression thereby making them critical to many cellular processes. In this study, we used graph machine learning methods to create a compendium of TF cascades using data extracted from the STRING database. A TF cascade is a sequence of TFs that regulate each other, forming a directed path in the TF network. We constructed a knowledge graph of 81,488 unique TF cascades, with the longest cascade consisting of 62 TFs. Our results highlight the complex and intricate nature of TF interactions, where multiple TFs work together to regulate gene expression. We also identified 10 TFs with the highest regulatory influence based on centrality measurements, providing valuable information for researchers interested in studying specific TFs. Furthermore, our pathway enrichment analysis revealed significant enrichment of various pathways and functional categories, including those involved in cancer and other diseases, as well as those involved in development, differentiation, and cell signaling. The enriched pathways identified in this study may have potential as targets for therapeutic intervention in diseases associated with dysregulation of transcription factors. We have released the dataset, knowledge graph, and graphML methods for the TF cascades, and created a website to display the results, which can be accessed by researchers interested in using this dataset. Our study provides a valuable resource for understanding the complex network of interactions between TFs and their regulatory roles in cellular processes.


An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), especially in domains where labeled data is scarce or expensive, such as clinical domain. However, to unlock the clinical knowledge hidden in these LLMs, we need to design effective prompts that can guide them to perform specific clinical NLP tasks without any task-specific training data. This is known as in-context learning, which is an art and science that requires understanding the strengths and weaknesses of different LLMs and prompt engineering approaches. In this paper, we present a comprehensive and systematic experimental study on prompt engineering for five clinical NLP tasks: Clinical Sense Disambiguation, Biomedical Evidence Extraction, Coreference Resolution, Medication Status Extraction, and Medication Attribute Extraction. We assessed the prompts proposed in recent literature, including simple prefix, simple cloze, chain of thought, and anticipatory prompts, and introduced two new types of prompts, namely heuristic prompting and ensemble prompting. We evaluated the performance of these prompts on three state-of-the-art LLMs: GPT-3.5, BARD, and LLAMA2. We also contrasted zero-shot prompting with few-shot prompting, and provide novel insights and guidelines for prompt engineering for LLMs in clinical NLP. To the best of our knowledge, this is one of the first works on the empirical evaluation of different prompt engineering approaches for clinical NLP in this era of generative AI, and we hope that it will inspire and inform future research in this area.


Fair Patient Model: Mitigating Bias in the Patient Representation Learned from the Electronic Health Records

arXiv.org Artificial Intelligence

Objective: To pre-train fair and unbiased patient representations from Electronic Health Records (EHRs) using a novel weighted loss function that reduces bias and improves fairness in deep representation learning models. Methods: We defined a new loss function, called weighted loss function, in the deep representation learning model to balance the importance of different groups of patients and features. We applied the proposed model, called Fair Patient Model (FPM), to a sample of 34,739 patients from the MIMIC-III dataset and learned patient representations for four clinical outcome prediction tasks. Results: FPM outperformed the baseline models in terms of three fairness metrics: demographic parity, equality of opportunity difference, and equalized odds ratio. FPM also achieved comparable predictive performance with the baselines, with an average accuracy of 0.7912. Feature analysis revealed that FPM captured more information from clinical features than the baselines. Conclusion: FPM is a novel method to pre-train fair and unbiased patient representations from EHR data using a weighted loss function. The learned representations can be used for various downstream tasks in healthcare and can be extended to other domains where bias and fairness are important.