Sivakumar, Vidyashankar
Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis
Sivakumar, Vidyashankar, Wu, Zhiwei Steven, Banerjee, Arindam
Bandit learning algorithms typically involve the balance of exploration and exploitation. However, in many practical applications, worst-case scenarios needing systematic exploration are seldom encountered. In this work, we consider a smoothed setting for structured linear contextual bandits where the adversarial contexts are perturbed by Gaussian noise and the unknown parameter $\theta^*$ has structure, e.g., sparsity, group sparsity, low rank, etc. We propose simple greedy algorithms for both the single- and multi-parameter (i.e., different parameter for each context) settings and provide a unified regret analysis for $\theta^*$ with any assumed structure. The regret bounds are expressed in terms of geometric quantities such as Gaussian widths associated with the structure of $\theta^*$. We also obtain sharper regret bounds compared to earlier work for the unstructured $\theta^*$ setting as a consequence of our improved analysis. We show there is implicit exploration in the smoothed setting where a simple greedy algorithm works.
Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond
Banerjee, Arindam, Gu, Qilong, Sivakumar, Vidyashankar, Wu, Zhiwei Steven
Several important families of computational and statistical results in machine learning and randomized algorithms rely on uniform bounds on quadratic forms of random vectors or matrices. Such results include the Johnson-Lindenstrauss (J-L) Lemma, the Restricted Isometry Property (RIP), randomized sketching algorithms, and approximate linear algebra. The existing results critically depend on statistical independence, e.g., independent entries for random vectors, independent rows for random matrices, etc., which prevent their usage in dependent or adaptive modeling settings. In this paper, we show that such independence is in fact not needed for such results which continue to hold under fairly general dependence structures. In particular, we present uniform bounds on random quadratic forms of stochastic processes which are conditionally independent and sub-Gaussian given another (latent) process. Our setup allows general dependencies of the stochastic process on the history of the latent process and the latent process to be influenced by realizations of the stochastic process. The results are thus applicable to adaptive modeling settings and also allows for sequential design of random vectors and matrices. We also discuss stochastic process based forms of J-L, RIP, and sketching, to illustrate the generality of the results.
Structured Stochastic Linear Bandits
Johnson, Nicholas, Sivakumar, Vidyashankar, Banerjee, Arindam
The stochastic linear bandit problem proceeds in rounds where at each round the algorithm selects a vector from a decision set after which it receives a noisy linear loss parameterized by an unknown vector. The goal in such a problem is to minimize the (pseudo) regret which is the difference between the total expected loss of the algorithm and the total expected loss of the best fixed vector in hindsight. In this paper, we consider settings where the unknown parameter has structure, e.g., sparse, group sparse, low-rank, which can be captured by a norm, e.g., $L_1$, $L_{(1,2)}$, nuclear norm. We focus on constructing confidence ellipsoids which contain the unknown parameter across all rounds with high-probability. We show the radius of such ellipsoids depend on the Gaussian width of sets associated with the norm capturing the structure. Such characterization leads to tighter confidence ellipsoids and, therefore, sharper regret bounds compared to bounds in the existing literature which are based on the ambient dimensionality.
Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs
Sivakumar, Vidyashankar, Banerjee, Arindam, Ravikumar, Pradeep K.
We consider the problem of high-dimensional structured estimation with norm-regularized estimators, such as Lasso, when the design matrix and noise are drawn from sub-exponential distributions.Existing results only consider sub-Gaussian designs and noise, and both the sample complexity and non-asymptotic estimation error have been shown to depend on the Gaussian width of suitable sets. In contrast, for the sub-exponential setting, we show that the sample complexity and the estimation error will depend on the exponential width of the corresponding sets, and the analysis holds for any norm. Further, using generic chaining, we show that the exponential width for any set will be at most $\sqrt{\log p}$ times the Gaussian width of the set, yielding Gaussian width based results even for the sub-exponential case. Further, for certain popular estimators, viz Lasso and Group Lasso, using a VC-dimension based analysis, we show that the sample complexity will in fact be the same order as Gaussian designs. Our general analysis and results are the first in the sub-exponential setting, and are readily applicable to special sub-exponential families such as log-concave and extreme-value distributions.
Estimation with Norm Regularization
Banerjee, Arindam, Chen, Sheng, Fazayeli, Farideh, Sivakumar, Vidyashankar
Analysis of non-asymptotic estimation error and structured statistical recovery based on norm regularized regression, such as Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise model. This paper presents generalizations of such estimation error analysis on all four aspects compared to the existing literature. We characterize the restricted error set where the estimation error vector lies, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to any norm. Precise characterizations of the bound is presented for isotropic as well as anisotropic subGaussian design matrices, subGaussian noise models, and convex loss functions, including least squares and generalized linear models. Generic chaining and associated results play an important role in the analysis. A key result from the analysis is that the sample complexity of all such estimators depends on the Gaussian width of a spherical cap corresponding to the restricted error set. Further, once the number of samples $n$ crosses the required sample complexity, the estimation error decreases as $\frac{c}{\sqrt{n}}$, where $c$ depends on the Gaussian width of the unit norm ball.
Estimation with Norm Regularization
Banerjee, Arindam, Chen, Sheng, Fazayeli, Farideh, Sivakumar, Vidyashankar
Analysis of estimation error and associated structured statistical recovery based on norm regularized regression, e.g., Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise vector. This paper presents generalizations of such estimation error analysis on all four aspects, compared to the existing literature. We characterize the restricted error set, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to {\em any} norm. Precise characterizations of the bound are presented for a variety of noise vectors, design matrices, including sub-Gaussian, anisotropic, and dependent samples, and loss functions, including least squares and generalized linear models. Gaussian widths, as a measure of size of suitable sets, and associated tools play a key role in our generalized analysis.
Multi-task Sparse Structure Learning
Goncalves, Andre R., Das, Puja, Chatterjee, Soumyadeep, Sivakumar, Vidyashankar, Von Zuben, Fernando J., Banerjee, Arindam
Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously. While sometimes the underlying task relationship structure is known, often the structure needs to be estimated from data at hand. In this paper, we present a novel family of models for MTL, applicable to regression and classification problems, capable of learning the structure of task relationships. In particular, we consider a joint estimation problem of the task relationship structure and the individual task parameters, which is solved using alternating minimization. The task relationship structure learning component builds on recent advances in structure learning of Gaussian graphical models based on sparse estimators of the precision (inverse covariance) matrix. We illustrate the effectiveness of the proposed model on a variety of synthetic and benchmark datasets for regression and classification. We also consider the problem of combining climate model outputs for better projections of future climate, with focus on temperature in South America, and show that the proposed model outperforms several existing methods for the problem.