Sisson, Scott A.
Positional Encoder Graph Quantile Neural Networks for Geographic Data
de Amorim, William E. R., Sisson, Scott A., Rodrigues, T., Nott, David J., Rodrigues, Guilherme S.
Positional Encoder Graph Neural Networks (PE-GNNs) are a leading approach for modeling continuous spatial data. However, they often fail to produce calibrated predictive distributions, limiting their effectiveness for uncertainty quantification. We introduce the Positional Encoder Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework, requiring minimal assumptions about the predictive distributions. We propose a new network architecture that, when combined with a quantile-based loss function, yields accurate and reliable probabilistic models without increasing computational complexity. Our approach provides a flexible, robust framework for conditional density estimation, applicable beyond spatial data contexts. We further introduce a structured method for incorporating a KNN predictor into the model while avoiding data leakage through the GNN layer operation. Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
Free-Form Variational Inference for Gaussian Process State-Space Models
Fan, Xuhui, Bonilla, Edwin V., O'Kane, Terence J., Sisson, Scott A.
Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to modeling the dynamics of a latent state, which is observed at discrete-time points via a likelihood model. However, inference in GPSSMs is computationally and statistically challenging due to the large number of latent variables in the model and the strong temporal dependencies between them. In this paper, we propose a new method for inference in Bayesian GPSSMs, which overcomes the drawbacks of previous approaches, namely over-simplified assumptions, and high computational requirements. Our method is based on free-form variational inference via stochastic gradient Hamiltonian Monte Carlo within the inducing-variable formalism. Furthermore, by exploiting our proposed variational distribution, we provide a collapsed extension of our method where the inducing variables are marginalized analytically. We also showcase results when combining our framework with particle MCMC methods. We show that, on six real-world datasets, our approach can learn transition dynamics and latent states more accurately than competing methods.
Efficient Bayesian synthetic likelihood with whitening transformations
Priddle, Jacob W., Sisson, Scott A., Drovandi, Christopher
Likelihood-free methods are an established approach for performing approximate Bayesian inference for models with intractable likelihood functions. However, they can be computationally demanding. Bayesian synthetic likelihood (BSL) is a popular such method that approximates the likelihood function of the summary statistic with a known, tractable distribution -- typically Gaussian -- and then performs statistical inference using standard likelihood-based techniques. However, as the number of summary statistics grows, the number of model simulations required to accurately estimate the covariance matrix for this likelihood rapidly increases. This poses significant challenge for the application of BSL, especially in cases where model simulation is expensive. In this article we propose whitening BSL (wBSL) -- an efficient BSL method that uses approximate whitening transformations to decorrelate the summary statistics at each algorithm iteration. We show empirically that this can reduce the number of model simulations required to implement BSL by more than an order of magnitude, without much loss of accuracy. We explore a range of whitening procedures and demonstrate the performance of wBSL on a range of simulated and real modelling scenarios from ecology and biology.
Acceleration of expensive computations in Bayesian statistics using vector operations
Warne, David J., Sisson, Scott A., Drovandi, Christopher
Many applications in Bayesian statistics are extremely computationally intensive. However, they are also often inherently parallel, making them prime targets for modern massively parallel central processing unit (CPU) architectures. While the use of multi-core and distributed computing is widely applied in the Bayesian community, very little attention has been given to fine-grain parallelisation using single instruction multiple data (SIMD) operations that are available on most modern commodity CPUs. Rather, most fine-grain tuning in the literature has centred around general purpose graphics processing units (GPGPUs). Since the effective utilisation of GPGPUs typically requires specialised programming languages, such technologies are not ideal for the wider Bayesian community. In this work, we practically demonstrate, using standard programming libraries, the utility of the SIMD approach for several topical Bayesian applications. In particular, we consider sampling of the prior predictive distribution for approximate Bayesian computation (ABC), and the computation of Bayesian $p$-values for testing prior weak informativeness. Through minor code alterations, we show that SIMD operations can improve the floating point arithmetic performance resulting in up to $6\times$ improvement in the overall serial algorithm performance. Furthermore $4$-way parallel versions can lead to almost $19\times$ improvement over a na\"{i}ve serial implementation. We illustrate the potential of SIMD operations for accelerating Bayesian computations and provide the reader with essential implementation techniques required to exploit modern massively parallel processing environments using standard software development tools.
Variance reduction properties of the reparameterization trick
Xu, Ming, Quiroz, Matias, Kohn, Robert, Sisson, Scott A.
The reparameterization trick is widely used in variational inference as it yields more accurate estimates of the gradient of the variational objective than alternative approaches such as the score function method. Although there is overwhelming empirical evidence in the literature showing its success, there is relatively little research exploring why the reparameterization trick is so effective. We explore this under the idealized assumptions that the variational approximation is a mean-field Gaussian density and that the log of the joint density of the model parameters and the data is a quadratic function that depends on the variational mean. From this, we show that the marginal variances of the reparameterization gradient estimator are smaller than those of the score function gradient estimator. We apply the result of our idealized analysis to real-world examples.
New models for symbolic data analysis
Beranger, Boris, Lin, Huan, Sisson, Scott A.
Symbolic data analysis (SDA) is an emerging area of statistics based on aggregating individual level data into group-based distributional summaries (symbols), and then developing statistical methods to analyse them. It is ideal for analysing large and complex datasets, and has immense potential to become a standard inferential technique in the near future. However, existing SDA techniques are either non-inferential, do not easily permit meaningful statistical models, are unable to distinguish between competing models, and are based on simplifying assumptions that are known to be false. Further, the procedure for constructing symbols from the underlying data is erroneously not considered relevant to the resulting statistical analysis. In this paper we introduce a new general method for constructing likelihood functions for symbolic data based on a desired probability model for the underlying classical data, while only observing the distributional summaries. This approach resolves many of the conceptual and practical issues with current SDA methods, opens the door for new classes of symbol design and construction, in addition to developing SDA as a viable tool to enable and improve upon classical data analyses, particularly for very large and complex datasets. This work creates a new direction for SDA research, which we illustrate through several real and simulated data analyses.
Blocking Collapsed Gibbs Sampler for Latent Dirichlet Allocation Models
Zhang, Xin, Sisson, Scott A.
The latent Dirichlet allocation (LDA) model is a widely-used latent variable model in machine learning for text analysis. Inference for this model typically involves a single-site collapsed Gibbs sampling step for latent variables associated with observations. The efficiency of the sampling is critical to the success of the model in practical large scale applications. In this article, we introduce a blocking scheme to the collapsed Gibbs sampler for the LDA model which can, with a theoretical guarantee, improve chain mixing efficiency. We develop two procedures, an O(K)-step backward simulation and an O(log K)-step nested simulation, to directly sample the latent variables within each block. We demonstrate that the blocking scheme achieves substantial improvements in chain mixing compared to the state of the art single-site collapsed Gibbs sampler. We also show that when the number of topics is over hundreds, the nested-simulation blocking scheme can achieve a significant reduction in computation time compared to the single-site sampler.