Goto

Collaborating Authors

 Siskind, Jeffrey M.


Floyd-Warshall Reinforcement Learning: Learning from Past Experiences to Reach New Goals

arXiv.org Machine Learning

Consider mutli-goal tasks that involve static environments and dynamic goals. Examples of such tasks, such as goal-directed navigation and pick-and-place in robotics, abound. Two types of Reinforcement Learning (RL) algorithms are used for such tasks: model-free or model-based. Each of these approaches has limitations. Model-free RL struggles to transfer learned information when the goal location changes, but achieves high asymptotic accuracy in single goal tasks. Model-based RL can transfer learned information to new goal locations by retaining the explicitly learned state-dynamics, but is limited by the fact that small errors in modelling these dynamics accumulate over long-term planning. In this work, we improve upon the limitations of model-free RL in multi-goal domains. We do this by adapting the Floyd-Warshall algorithm for RL and call the adaptation Floyd-Warshall RL (FWRL). The proposed algorithm learns a goal-conditioned action-value function by constraining the value of the optimal path between any two states to be greater than or equal to the value of paths via intermediary states. Experimentally, we show that FWRL is more sample-efficient and learns higher reward strategies in multi-goal tasks as compared to Q-learning, model-based RL and other relevant baselines in a tabular domain.


Nonstandard Interpretations of Probabilistic Programs for Efficient Inference

Neural Information Processing Systems

Probabilistic programming languages allow modelers to specify a stochastic process using syntax that resembles modern programming languages. Because the program is in machine-readable format, a variety of techniques from compiler design and program analysis can be used to examine the structure of the distribution represented by the probabilistic program. We show how nonstandard interpretations of probabilistic programs can be used to craft efficient inference algorithms: information about the structure of a distribution (such as gradients or dependencies) is generated as a monad-like side computation while executing the program. These interpretations can be easily coded using special-purpose objects and operator overloading. We implement two examples of nonstandard interpretations in two different languages, and use them as building blocks to construct inference algorithms: automatic differentiation, which enables gradient based methods, and provenance tracking, which enables efficient construction of global proposals.


Salient Boundary Detection using Ratio Contour

Neural Information Processing Systems

This paper presents a novel graph-theoretic approach, named ratio contour, to extract perceptually salient boundaries from a set of noisy boundary fragments detected in real images. The boundary saliency is defined using the Gestalt laws of closure, proximity, and continuity. This paper first constructs an undirected graph with two different sets of edges: solid edges and dashed edges. The weights of solid and dashed edges measure the local saliency in and between boundary fragments, respectively. Then the most salient boundary is detected by searching for an optimal cycle in this graph with minimum average weight. The proposed approach guarantees the global optimality without introducing any biases related to region area or boundary length. We collect a variety of images for testing the proposed approach with encouraging results.


Salient Boundary Detection using Ratio Contour

Neural Information Processing Systems

This paper presents a novel graph-theoretic approach, named ratio contour, toextract perceptually salient boundaries from a set of noisy boundary fragments detected in real images. The boundary saliency is defined using the Gestalt laws of closure, proximity, and continuity. This paper firstconstructs an undirected graph with two different sets of edges: solid edges and dashed edges. The weights of solid and dashed edges measure the local saliency in and between boundary fragments, respectively. Thenthe most salient boundary is detected by searching for an optimal cycle in this graph with minimum average weight. The proposed approach guarantees the global optimality without introducing any biases related to region area or boundary length. We collect a variety of images for testing the proposed approach with encouraging results.