Goto

Collaborating Authors

 Sinha, Samarth


Offline Policy Optimization in RL with Variance Regularizaton

arXiv.org Artificial Intelligence

Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.


Uniform Priors for Data-Efficient Transfer

arXiv.org Machine Learning

Deep Neural Networks have shown great promise on a variety of downstream applications; but their ability to adapt and generalize to new data and tasks remains a challenge. However, the ability to perform few or zero-shot adaptation to novel tasks is important for the scalability and deployment of machine learning models. It is therefore crucial to understand what makes for good, transfer-able features in deep networks that best allow for such adaptation. In this paper, we shed light on this by showing that features that are most transferable have high uniformity in the embedding space and propose a uniformity regularization scheme that encourages better transfer and feature reuse. We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data, for which we conduct a thorough experimental study covering four relevant, and distinct domains: few-shot Meta-Learning, Deep Metric Learning, Zero-Shot Domain Adaptation, as well as Out-of-Distribution classification. Across all experiments, we show that uniformity regularization consistently offers benefits over baseline methods and is able to achieve state-of-the-art performance in Deep Metric Learning and Meta-Learning.


Experience Replay with Likelihood-free Importance Weights

arXiv.org Artificial Intelligence

The use of past experiences to accelerate temporal difference (TD) learning of value functions, or experience replay, is a key component in deep reinforcement learning. Prioritization or reweighting of important experiences has shown to improve performance of TD learning algorithms. In this work, we propose to reweight experiences based on their likelihood under the stationary distribution of the current policy. Using the corresponding reweighted TD objective, we implicitly encourage small approximation errors on the value function over frequently encountered states. We use a likelihood-free density ratio estimator over the replay buffer to assign the prioritization weights. We apply the proposed approach empirically on two competitive methods, Soft Actor Critic (SAC) and Twin Delayed Deep Deterministic policy gradient (TD3) - over a suite of OpenAI gym tasks and achieve superior sample complexity compared to other baseline approaches.


Variational Adversarial Active Learning

arXiv.org Machine Learning

Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on $\text{CIFAR10/100}$, $\text{Caltech-256}$, $\text{ImageNet}$, $\text{Cityscapes}$, and $\text{BDD100K}$. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method.


Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders

arXiv.org Artificial Intelligence

Many approaches in generalized zero-shot learning rely on cross-modal mapping between the image feature space and the class embedding space. As labeled images are rare, one direction is to augment the dataset by generating either images or image features. However, the former misses fine-grained details and the latter requires learning a mapping associated with class embeddings. In this work, we take feature generation one step further and propose a model where a shared latent space of image features and class embeddings is learned by modality-specific aligned variational autoencoders. This leaves us with the required discriminative information about the image and classes in the latent features, on which we train a softmax classifier. The key to our approach is that we align the distributions learned from images and from side-information to construct latent features that contain the essential multi-modal information associated with unseen classes. We evaluate our learned latent features on several benchmark datasets, i.e. CUB, SUN, AWA1 and AWA2, and establish a new state-of-the-art on generalized zero-shot as well as on few-shot learning. Moreover, our results on ImageNet with various zero-shot splits show that our latent features generalize well in large-scale settings.