Goto

Collaborating Authors

 Sinha, Neelabh


Evaluating Open Language Models Across Task Types, Application Domains, and Reasoning Types: An In-Depth Experimental Analysis

arXiv.org Artificial Intelligence

The rapid rise of Language Models (LMs) has expanded their use in several applications. Yet, due to constraints of model size, associated cost, or proprietary restrictions, utilizing state-of-the-art (SOTA) LLMs is not always feasible. With open, smaller LMs emerging, more applications can leverage their capabilities, but selecting the right LM can be challenging. This work conducts an in-depth experimental analysis of the semantic correctness of outputs of 10 smaller, open LMs across three aspects: task types, application domains and reasoning types, using diverse prompt styles. We demonstrate that most effective models and prompt styles vary depending on the specific requirements. Our analysis provides a comparative assessment of LMs and prompt styles using a proposed three-tier schema of aspects for their strategic selection based on use-case and other constraints. We also show that if utilized appropriately, these LMs can compete with, and sometimes outperform, SOTA LLMs like DeepSeek-v2, GPT-3.5-Turbo, and GPT-4o.


Multimodal Personality Recognition using Cross-Attention Transformer and Behaviour Encoding

arXiv.org Artificial Intelligence

Personality computing and affective computing have gained recent interest in many research areas. The datasets for the task generally have multiple modalities like video, audio, language and bio-signals. In this paper, we propose a flexible model for the task which exploits all available data. The task involves complex relations and to avoid using a large model for video processing specifically, we propose the use of behaviour encoding which boosts performance with minimal change to the model. Cross-attention using transformers has become popular in recent times and is utilised for fusion of different modalities. Since long term relations may exist, breaking the input into chunks is not desirable, thus the proposed model processes the entire input together. Our experiments show the importance of each of the above contributions