Goto

Collaborating Authors

 Singleton, Joseph


A Logic of Expertise

arXiv.org Artificial Intelligence

In this paper we introduce a simple modal logic framework to reason about the expertise of an information source. In the framework, a source is an expert on a proposition $p$ if they are able to correctly determine the truth value of $p$ in any possible world. We also consider how information may be false, but true after accounting for the lack of expertise of the source. This is relevant for modelling situations in which information sources make claims beyond their domain of expertise. We use non-standard semantics for the language based on an expertise set with certain closure properties. It turns out there is a close connection between our semantics and S5 epistemic logic, so that expertise can be expressed in terms of knowledge at all possible states. We use this connection to obtain a sound and complete axiomatisation.


Online Handbook of Argumentation for AI: Volume 1

arXiv.org Artificial Intelligence

This volume contains revised versions of the papers selected for the first volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.