Goto

Collaborating Authors

 Singla, Yaman Kumar


Persuasion Strategies in Advertisements

arXiv.org Artificial Intelligence

Modeling what makes an advertisement persuasive, i.e., eliciting the desired response from consumer, is critical to the study of propaganda, social psychology, and marketing. Despite its importance, computational modeling of persuasion in computer vision is still in its infancy, primarily due to the lack of benchmark datasets that can provide persuasion-strategy labels associated with ads. Motivated by persuasion literature in social psychology and marketing, we introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies. We then formulate the task of persuasion strategy prediction with multi-modal learning, where we design a multi-task attention fusion model that can leverage other ad-understanding tasks to predict persuasion strategies. Further, we conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies where we use our model's predictions to analyze which strategies work with different demographics (age and gender). The dataset also provides image segmentation masks, which labels persuasion strategies in the corresponding ad images on the test split. We publicly release our code and dataset https://midas-research.github.io/persuasion-advertisements/.


Synthesizing Human Gaze Feedback for Improved NLP Performance

arXiv.org Artificial Intelligence

Integrating human feedback in models can improve the performance of natural language processing (NLP) models. Feedback can be either explicit (e.g. ranking used in training language models) or implicit (e.g. using human cognitive signals in the form of eyetracking). Prior eye tracking and NLP research reveal that cognitive processes, such as human scanpaths, gleaned from human gaze patterns aid in the understanding and performance of NLP models. However, the collection of real eyetracking data for NLP tasks is challenging due to the requirement of expensive and precise equipment coupled with privacy invasion issues. To address this challenge, we propose ScanTextGAN, a novel model for generating human scanpaths over text. We show that ScanTextGAN-generated scanpaths can approximate meaningful cognitive signals in human gaze patterns. We include synthetically generated scanpaths in four popular NLP tasks spanning six different datasets as proof of concept and show that the models augmented with generated scanpaths improve the performance of all downstream NLP tasks.


AES Are Both Overstable And Oversensitive: Explaining Why And Proposing Defenses

arXiv.org Artificial Intelligence

Deep-learning based Automatic Essay Scoring (AES) systems are being actively used by states and language testing agencies alike to evaluate millions of candidates for life-changing decisions ranging from college applications to visa approvals. However, little research has been put to understand and interpret the black-box nature of deep-learning based scoring algorithms. Previous studies indicate that scoring models can be easily fooled. In this paper, we explore the reason behind their surprising adversarial brittleness. We utilize recent advances in interpretability to find the extent to which features such as coherence, content, vocabulary, and relevance are important for automated scoring mechanisms. We use this to investigate the oversensitivity i.e., large change in output score with a little change in input essay content) and overstability i.e., little change in output scores with large changes in input essay content) of AES. Our results indicate that autoscoring models, despite getting trained as "end-to-end" models with rich contextual embeddings such as BERT, behave like bag-of-words models. A few words determine the essay score without the requirement of any context making the model largely overstable. This is in stark contrast to recent probing studies on pre-trained representation learning models, which show that rich linguistic features such as parts-of-speech and morphology are encoded by them. Further, we also find that the models have learnt dataset biases, making them oversensitive. To deal with these issues, we propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies. We find that our proposed models are able to detect unusual attribution patterns and flag adversarial samples successfully.


My Teacher Thinks The World Is Flat! Interpreting Automatic Essay Scoring Mechanism

arXiv.org Artificial Intelligence

Significant progress has been made in deep-learning based Automatic Essay Scoring (AES) systems in the past two decades. However, little research has been put to understand and interpret the black-box nature of these deep-learning based scoring models. Recent work shows that automated scoring systems are prone to even common-sense adversarial samples. Their lack of natural language understanding capability raises questions on the models being actively used by millions of candidates for life-changing decisions. With scoring being a highly multi-modal task, it becomes imperative for scoring models to be validated and tested on all these modalities. We utilize recent advances in interpretability to find the extent to which features such as coherence, content and relevance are important for automated scoring mechanisms and why they are susceptible to adversarial samples. We find that the systems tested consider essays not as a piece of prose having the characteristics of natural flow of speech and grammatical structure, but as `word-soups' where a few words are much more important than the other words. Removing the context surrounding those few important words causes the prose to lose the flow of speech and grammar, however has little impact on the predicted score. We also find that since the models are not semantically grounded with world-knowledge and common sense, adding false facts such as ``the world is flat'' actually increases the score instead of decreasing it.