Goto

Collaborating Authors

 Singh, Sidak Pal


Avoiding spurious sharpness minimization broadens applicability of SAM

arXiv.org Machine Learning

Curvature regularization techniques like Sharpness Aware Minimization (SAM) have shown great promise in improving generalization on vision tasks. However, we find that SAM performs poorly in domains like natural language processing (NLP), often degrading performance -- even with twice the compute budget. We investigate the discrepancy across domains and find that in the NLP setting, SAM is dominated by regularization of the logit statistics -- instead of improving the geometry of the function itself. We use this observation to develop an alternative algorithm we call Functional-SAM, which regularizes curvature only through modification of the statistics of the overall function implemented by the neural network, and avoids spurious minimization through logit manipulation. Furthermore, we argue that preconditioning the SAM perturbation also prevents spurious minimization, and when combined with Functional-SAM, it gives further improvements. Our proposed algorithms show improved performance over AdamW and SAM baselines when trained for an equal number of steps, in both fixed-length and Chinchilla-style training settings, at various model scales (including billion-parameter scale). On the whole, our work highlights the importance of more precise characterizations of sharpness in broadening the applicability of curvature regularization to large language models (LLMs).


Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks

arXiv.org Machine Learning

The Gauss-Newton (GN) matrix plays an important role in machine learning, most evident in its use as a preconditioning matrix for a wide family of popular adaptive methods to speed up optimization. Besides, it can also provide key insights into the optimization landscape of neural networks. In the context of deep neural networks, understanding the GN matrix involves studying the interaction between different weight matrices as well as the dependencies introduced by the data, thus rendering its analysis challenging. In this work, we take a first step towards theoretically characterizing the conditioning of the GN matrix in neural networks. We establish tight bounds on the condition number of the GN in deep linear networks of arbitrary depth and width, which we also extend to two-layer ReLU networks. We expand the analysis to further architectural components, such as residual connections and convolutional layers. Finally, we empirically validate the bounds and uncover valuable insights into the influence of the analyzed architectural components.


What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis

arXiv.org Machine Learning

The Transformer architecture has inarguably revolutionized deep learning, overtaking classical architectures like multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs). At its core, the attention block differs in form and functionality from most other architectural components in deep learning -- to the extent that Transformers are often accompanied by adaptive optimizers, layer normalization, learning rate warmup, and more, in comparison to MLPs/CNNs. The root causes behind these outward manifestations, and the precise mechanisms that govern them, remain poorly understood. In this work, we bridge this gap by providing a fundamental understanding of what distinguishes the Transformer from the other architectures -- grounded in a theoretical comparison of the (loss) Hessian. Concretely, for a single self-attention layer, (a) we first entirely derive the Transformer's Hessian and express it in matrix derivatives; (b) we then characterize it in terms of data, weight, and attention moment dependencies; and (c) while doing so further highlight the important structural differences to the Hessian of classical networks. Our results suggest that various common architectural and optimization choices in Transformers can be traced back to their highly non-linear dependencies on the data and weight matrices, which vary heterogeneously across parameters. Ultimately, our findings provide a deeper understanding of the Transformer's unique optimization landscape and the challenges it poses.


Landscaping Linear Mode Connectivity

arXiv.org Artificial Intelligence

The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC) [6], has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected [11]. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a'mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.


Hallmarks of Optimization Trajectories in Neural Networks and LLMs: The Lengths, Bends, and Dead Ends

arXiv.org Machine Learning

We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich structure of parameters contained within their optimization trajectories. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which reveal the inherent nuance and interplay involved between various optimization choices, such as momentum, weight decay, and batch size. We use them to provide key hallmarks about the nature of optimization in deep neural networks: when it goes right, and when it finds itself in a dead end. Further, thanks to our trajectory perspective, we uncover an intertwined behaviour of momentum and weight decay that promotes directional exploration, as well as a directional regularization behaviour of some others. We perform experiments over large-scale vision and language settings, including large language models (LLMs) with up to 12 billion parameters, to demonstrate the value of our approach.


Towards Meta-Pruning via Optimal Transport

arXiv.org Artificial Intelligence

Structural pruning of neural networks conventionally relies on identifying and discarding less important neurons, a practice often resulting in significant accuracy loss that necessitates subsequent fine-tuning efforts. This paper introduces a novel approach named Intra-Fusion, challenging this prevailing pruning paradigm. Unlike existing methods that focus on designing meaningful neuron importance metrics, Intra-Fusion redefines the overlying pruning procedure. Through utilizing the concepts of model fusion and Optimal Transport, we leverage an agnostically given importance metric to arrive at a more effective sparse model representation. Notably, our approach achieves substantial accuracy recovery without the need for resource-intensive fine-tuning, making it an efficient and promising tool for neural network compression. Additionally, we explore how fusion can be added to the pruning process to significantly decrease the training time while maintaining competitive performance. We benchmark our results for various networks on commonly used datasets such as CIFAR-10, CIFAR-100, and ImageNet. More broadly, we hope that the proposed Intra-Fusion approach invigorates exploration into a fresh alternative to the predominant compression approaches. Alongside the massive progress in the past few years, modern over-parameterized neural networks have also brought another thing onto the table. That is, of course, their massive size. Consequently, as part of the community keeps training bigger networks, another community has been working, often in the background, to ensure that these bulky networks can be made compact to actually be deployed (Hassibi et al., 1993). However, despite the apparent conceptual simplicity of these techniques, compressing neural networks, in practice, is not as straightforward as simply doing one or two traditional post-processing steps (Blalock et al., 2020). The process involves a crucial element--fine-tuning or retraining, on the original dataset or a subset--extending over several additional epochs.


Rethinking Attention: Exploring Shallow Feed-Forward Neural Networks as an Alternative to Attention Layers in Transformers

arXiv.org Artificial Intelligence

This work presents an analysis of the effectiveness of using standard shallow feed-forward networks to mimic the behavior of the attention mechanism in the original Transformer model, a state-of-the-art architecture for sequence-to-sequence tasks. We substitute key elements of the attention mechanism in the Transformer with simple feed-forward networks, trained using the original components via knowledge distillation. Our experiments, conducted on the IWSLT2017 dataset, reveal the capacity of these "attentionless Transformers" to rival the performance of the original architecture. Through rigorous ablation studies, and experimenting with various replacement network types and sizes, we offer insights that support the viability of our approach. This not only sheds light on the adaptability of shallow feed-forward networks in emulating attention mechanisms but also underscores their potential to streamline complex architectures for sequence-to-sequence tasks.


Some Intriguing Aspects about Lipschitz Continuity of Neural Networks

arXiv.org Machine Learning

Lipschitz continuity is a crucial functional property of any predictive model, that naturally governs its robustness, generalisation, as well as adversarial vulnerability. Contrary to other works that focus on obtaining tighter bounds and developing different practical strategies to enforce certain Lipschitz properties, we aim to thoroughly examine and characterise the Lipschitz behaviour of Neural Networks. Thus, we carry out an empirical investigation in a range of different settings (namely, architectures, datasets, label noise, and more) by exhausting the limits of the simplest and the most general lower and upper bounds. As a highlight of this investigation, we showcase a remarkable fidelity of the lower Lipschitz bound, identify a striking Double Descent trend in both upper and lower bounds to the Lipschitz and explain the intriguing effects of label noise on function smoothness and generalisation.


Transformer Fusion with Optimal Transport

arXiv.org Machine Learning

Fusion is a technique for merging multiple independently-trained neural networks in order to combine their capabilities. Past attempts have been restricted to the case of fully-connected, convolutional, and residual networks. In this paper, we present a systematic approach for fusing two or more transformer-based networks exploiting Optimal Transport to (soft-)align the various architectural components. We flesh out an abstraction for layer alignment, that can generalize to arbitrary architectures - in principle - and we apply this to the key ingredients of Transformers such as multi-head self-attention, layer-normalization, and residual connections, and we discuss how to handle them via various ablation studies. Furthermore, our method allows the fusion of models of different sizes (heterogeneous fusion), providing a new and efficient way for compression of Transformers. The proposed approach is evaluated on both image classification tasks via Vision Transformer and natural language modeling tasks using BERT. Our approach consistently outperforms vanilla fusion, and, after a surprisingly short finetuning, also outperforms the individual converged parent models. In our analysis, we uncover intriguing insights about the significant role of soft alignment in the case of Transformers. Transformers, as introduced by Vaswani et al. (Vaswani et al., 2017), have profoundly impacted machine learning, establishing a prevailing neural network architecture across various domains. Transformers consistently excel in different fields, including natural language processing (Lin et al., 2022), time series forecasting (Wen et al., 2022), and computer vision (Dosovitskiy et al., 2020).


Towards guarantees for parameter isolation in continual learning

arXiv.org Artificial Intelligence

Deep learning has proved to be a successful paradigm for solving many challenges in machine learning. However, deep neural networks fail when trained sequentially on multiple tasks, a shortcoming known as catastrophic forgetting in the continual learning literature. Despite a recent flourish of learning algorithms successfully addressing this problem, we find that provable guarantees against catastrophic forgetting are lacking. In this work, we study the relationship between learning and forgetting by looking at the geometry of neural networks' loss landscape. We offer a unifying perspective on a family of continual learning algorithms, namely methods based on parameter isolation, and we establish guarantees on catastrophic forgetting for some of them. Statistical models based on deep neural networks are trusted with ever more complex tasks in realworld applications. In real-world environments the ability to continually and rapidly learn new behaviors is crucial. It is therefore worthwhile to understand how deep neural networks store and integrate new information. In this paper, we want to study neural networks in the continual learning setting, where the input to the learning algorithm is a data stream. In this setting, it has been observed that training neural networks on new data often severely degrades the performance on old data, a phenomenon termed catastrophic forgetting (McCloskey & Cohen, 1989), which we will often simply refer to as forgetting herefter. Generally speaking, continual learning algorithms address catastrophic forgetting by leveraging storage external to the network and imposing constraints (implicit, or explicit) that ensure the network does not stray too far off from the prior tasks when a new task is given. The storage gets updated with each new learning task and its specific contents depend on the algorithm: typical examples include vectors in the parameter space (network parameters or gradients), input samples, or neural activities. We review the main trends in the literature in the related work section (Section 2).