Goto

Collaborating Authors

 Singh, Prachi


The Second DISPLACE Challenge : DIarization of SPeaker and LAnguage in Conversational Environments

arXiv.org Artificial Intelligence

The DIarization of SPeaker and LAnguage in Conversational Environments (DISPLACE) 2024 challenge is the second in the series of DISPLACE challenges, which involves tasks of speaker diarization (SD) and language diarization (LD) on a challenging multilingual conversational speech dataset. In the DISPLACE 2024 challenge, we also introduced the task of automatic speech recognition (ASR) on this dataset. The dataset containing 158 hours of speech, consisting of both supervised and unsupervised mono-channel far-field recordings, was released for LD and SD tracks. Further, 12 hours of close-field mono-channel recordings were provided for the ASR track conducted on 5 Indian languages. The details of the dataset, baseline systems and the leader board results are highlighted in this paper. We have also compared our baseline models and the team's performances on evaluation data of DISPLACE-2023 to emphasize the advancements made in this second version of the challenge.


Overlap-aware End-to-End Supervised Hierarchical Graph Clustering for Speaker Diarization

arXiv.org Artificial Intelligence

Speaker diarization, the task of segmenting an audio recording based on speaker identity, constitutes an important speech pre-processing step for several downstream applications. The conventional approach to diarization involves multiple steps of embedding extraction and clustering, which are often optimized in an isolated fashion. While end-to-end diarization systems attempt to learn a single model for the task, they are often cumbersome to train and require large supervised datasets. In this paper, we propose an end-to-end supervised hierarchical clustering algorithm based on graph neural networks (GNN), called End-to-end Supervised HierARchical Clustering (E-SHARC). The E-SHARC approach uses front-end mel-filterbank features as input and jointly learns an embedding extractor and the GNN clustering module, performing representation learning, metric learning, and clustering with end-to-end optimization. Further, with additional inputs from an external overlap detector, the E-SHARC approach is capable of predicting the speakers in the overlapping speech regions. The experimental evaluation on several benchmark datasets like AMI, VoxConverse and DISPLACE, illustrates that the proposed E-SHARC framework improves significantly over the state-of-art diarization systems.


Summary of the DISPLACE Challenge 2023 - DIarization of SPeaker and LAnguage in Conversational Environments

arXiv.org Artificial Intelligence

In multi-lingual societies, where multiple languages are spoken in a small geographic vicinity, informal conversations often involve mix of languages. Existing speech technologies may be inefficient in extracting information from such conversations, where the speech data is rich in diversity with multiple languages and speakers. The DISPLACE (DIarization of SPeaker and LAnguage in Conversational Environments) challenge constitutes an open-call for evaluating and bench-marking the speaker and language diarization technologies on this challenging condition. The challenge entailed two tracks: Track-1 focused on speaker diarization (SD) in multilingual situations while, Track-2 addressed the language diarization (LD) in a multi-speaker scenario. Both the tracks were evaluated using the same underlying audio data. To facilitate this evaluation, a real-world dataset featuring multilingual, multi-speaker conversational far-field speech was recorded and distributed. Furthermore, a baseline system was made available for both SD and LD task which mimicked the state-of-art in these tasks. The challenge garnered a total of $42$ world-wide registrations and received a total of $19$ combined submissions for Track-1 and Track-2. This paper describes the challenge, details of the datasets, tasks, and the baseline system. Additionally, the paper provides a concise overview of the submitted systems in both tracks, with an emphasis given to the top performing systems. The paper also presents insights and future perspectives for SD and LD tasks, focusing on the key challenges that the systems need to overcome before wide-spread commercial deployment on such conversations.


Supervised Hierarchical Clustering using Graph Neural Networks for Speaker Diarization

arXiv.org Artificial Intelligence

Conventional methods for speaker diarization involve windowing an audio file into short segments to extract speaker embeddings, followed by an unsupervised clustering of the embeddings. This multi-step approach generates speaker assignments for each segment. In this paper, we propose a novel Supervised HierArchical gRaph Clustering algorithm (SHARC) for speaker diarization where we introduce a hierarchical structure using Graph Neural Network (GNN) to perform supervised clustering. The supervision allows the model to update the representations and directly improve the clustering performance, thus enabling a single-step approach for diarization. In the proposed work, the input segment embeddings are treated as nodes of a graph with the edge weights corresponding to the similarity scores between the nodes. We also propose an approach to jointly update the embedding extractor and the GNN model to perform end-to-end speaker diarization (E2E-SHARC). During inference, the hierarchical clustering is performed using node densities and edge existence probabilities to merge the segments until convergence. In the diarization experiments, we illustrate that the proposed E2E-SHARC approach achieves 53% and 44% relative improvements over the baseline systems on benchmark datasets like AMI and Voxconverse, respectively.