Singh, Mannat
Movie Gen: A Cast of Media Foundation Models
Polyak, Adam, Zohar, Amit, Brown, Andrew, Tjandra, Andros, Sinha, Animesh, Lee, Ann, Vyas, Apoorv, Shi, Bowen, Ma, Chih-Yao, Chuang, Ching-Yao, Yan, David, Choudhary, Dhruv, Wang, Dingkang, Sethi, Geet, Pang, Guan, Ma, Haoyu, Misra, Ishan, Hou, Ji, Wang, Jialiang, Jagadeesh, Kiran, Li, Kunpeng, Zhang, Luxin, Singh, Mannat, Williamson, Mary, Le, Matt, Yu, Matthew, Singh, Mitesh Kumar, Zhang, Peizhao, Vajda, Peter, Duval, Quentin, Girdhar, Rohit, Sumbaly, Roshan, Rambhatla, Sai Saketh, Tsai, Sam, Azadi, Samaneh, Datta, Samyak, Chen, Sanyuan, Bell, Sean, Ramaswamy, Sharadh, Sheynin, Shelly, Bhattacharya, Siddharth, Motwani, Simran, Xu, Tao, Li, Tianhe, Hou, Tingbo, Hsu, Wei-Ning, Yin, Xi, Dai, Xiaoliang, Taigman, Yaniv, Luo, Yaqiao, Liu, Yen-Cheng, Wu, Yi-Chiao, Zhao, Yue, Kirstain, Yuval, He, Zecheng, He, Zijian, Pumarola, Albert, Thabet, Ali, Sanakoyeu, Artsiom, Mallya, Arun, Guo, Baishan, Araya, Boris, Kerr, Breena, Wood, Carleigh, Liu, Ce, Peng, Cen, Vengertsev, Dimitry, Schonfeld, Edgar, Blanchard, Elliot, Juefei-Xu, Felix, Nord, Fraylie, Liang, Jeff, Hoffman, John, Kohler, Jonas, Fire, Kaolin, Sivakumar, Karthik, Chen, Lawrence, Yu, Licheng, Gao, Luya, Georgopoulos, Markos, Moritz, Rashel, Sampson, Sara K., Li, Shikai, Parmeggiani, Simone, Fine, Steve, Fowler, Tara, Petrovic, Vladan, Du, Yuming
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
The effectiveness of MAE pre-pretraining for billion-scale pretraining
Singh, Mannat, Duval, Quentin, Alwala, Kalyan Vasudev, Fan, Haoqi, Aggarwal, Vaibhav, Adcock, Aaron, Joulin, Armand, Dollรกr, Piotr, Feichtenhofer, Christoph, Girshick, Ross, Girdhar, Rohit, Misra, Ishan
This paper revisits the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks. Typically, state-of-the-art foundation models are pretrained using large scale (weakly) supervised datasets with billions of images. We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model. While MAE has only been shown to scale with the size of models, we find that it scales with the size of the training dataset as well. Thus, our MAE-based pre-pretraining scales with both model and data size making it applicable for training foundation models. Pre-pretraining consistently improves both the model convergence and the downstream transfer performance across a range of model scales (millions to billions of parameters), and dataset sizes (millions to billions of images). We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition. Our largest model achieves new state-of-the-art results on iNaturalist-18 (91.7%), ImageNet-ReaL (91.1%), 1-shot ImageNet-1k (63.6%), and zero-shot transfer on Food-101 (96.2%). Our study reveals that model initialization plays a significant role, even for web-scale pretraining with billions of images, and our models are available publicly.
Emu Video: Factorizing Text-to-Video Generation by Explicit Image Conditioning
Girdhar, Rohit, Singh, Mannat, Brown, Andrew, Duval, Quentin, Azadi, Samaneh, Rambhatla, Sai Saketh, Shah, Akbar, Yin, Xi, Parikh, Devi, Misra, Ishan
We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions--adjusted noise schedules for diffusion, and multi-stage training--that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work--81% vs. Google's Imagen Video, 90% vs. Nvidia's PYOCO, and 96% vs. Meta's Make-A-Video. Our model outperforms commercial solutions such as RunwayML's Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user's text prompt, where our generations are preferred 96% over prior work.
ImageBind: One Embedding Space To Bind Them All
Girdhar, Rohit, El-Nouby, Alaaeldin, Liu, Zhuang, Singh, Mannat, Alwala, Kalyan Vasudev, Joulin, Armand, Misra, Ishan
We present ImageBind, an approach to learn a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. We show that all combinations of paired data are not necessary to train such a joint embedding, and only image-paired data is sufficient to bind the modalities together. ImageBind can leverage recent large scale vision-language models, and extends their zero-shot capabilities to new modalities just by using their natural pairing with images. It enables novel emergent applications 'out-of-the-box' including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation. The emergent capabilities improve with the strength of the image encoder and we set a new state-of-the-art on emergent zero-shot recognition tasks across modalities, outperforming specialist supervised models. Finally, we show strong few-shot recognition results outperforming prior work, and that ImageBind serves as a new way to evaluate vision models for visual and non-visual tasks.
OmniMAE: Single Model Masked Pretraining on Images and Videos
Girdhar, Rohit, El-Nouby, Alaaeldin, Singh, Mannat, Alwala, Kalyan Vasudev, Joulin, Armand, Misra, Ishan
Transformer-based architectures have become competitive across a variety of visual domains, most notably images and videos. While prior work studies these modalities in isolation, having a common architecture suggests that one can train a single unified model for multiple visual modalities. Prior attempts at unified modeling typically use architectures tailored for vision tasks, or obtain worse performance compared to single modality models. In this work, we show that masked autoencoding can be used to train a simple Vision Transformer on images and videos, without requiring any labeled data. This single model learns visual representations that are comparable to or better than single-modality representations on both image and video benchmarks, while using a much simpler architecture. Furthermore, this model can be learned by dropping 90% of the image and 95% of the video patches, enabling extremely fast training of huge model architectures. In particular, we show that our single ViT-Huge model can be finetuned to achieve 86.6% on ImageNet and 75.5% on the challenging Something Something-v2 video benchmark, setting a new state-of-the-art.
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
Goyal, Priya, Duval, Quentin, Seessel, Isaac, Caron, Mathilde, Singh, Mannat, Misra, Ishan, Sagun, Levent, Joulin, Armand, Bojanowski, Piotr
Discriminative self-supervised learning allows training models on any random group of internet images, and possibly recover salient information that helps differentiate between the images. Applied to ImageNet, this leads to object centric features that perform on par with supervised features on most object-centric downstream tasks. In this work, we question if using this ability, we can learn any salient and more representative information present in diverse unbounded set of images from across the globe. To do so, we train models on billions of random images without any data pre-processing or prior assumptions about what we want the model to learn. We scale our model size to dense 10 billion parameters to avoid underfitting on a large data size. We extensively study and validate our model performance on over 50 benchmarks including fairness, robustness to distribution shift, geographical diversity, fine grained recognition, image copy detection and many image classification datasets. The resulting model, not only captures well semantic information, it also captures information about artistic style and learns salient information such as geolocations and multilingual word embeddings based on visual content only. More importantly, we discover that such model is more robust, more fair, less harmful and less biased than supervised models or models trained on object centric datasets such as ImageNet.
Omnivore: A Single Model for Many Visual Modalities
Girdhar, Rohit, Singh, Mannat, Ravi, Nikhila, van der Maaten, Laurens, Joulin, Armand, Misra, Ishan
Prior work has studied different visual modalities in isolation and developed separate architectures for recognition of images, videos, and 3D data. Instead, in this paper, we propose a single model which excels at classifying images, videos, and single-view 3D data using exactly the same model parameters. Our 'Omnivore' model leverages the flexibility of transformer-based architectures and is trained jointly on classification tasks from different modalities. Omnivore is simple to train, uses off-the-shelf standard datasets, and performs at-par or better than modality-specific models of the same size. A single Omnivore model obtains 86.0% on ImageNet, 84.1% on Kinetics, and 67.1% on SUN RGB-D. After finetuning, our models outperform prior work on a variety of vision tasks and generalize across modalities. Omnivore's shared visual representation naturally enables cross-modal recognition without access to correspondences between modalities. We hope our results motivate researchers to model visual modalities together.
Self-supervised Pretraining of Visual Features in the Wild
Goyal, Priya, Caron, Mathilde, Lefaudeux, Benjamin, Xu, Min, Wang, Pengchao, Pai, Vivek, Singh, Mannat, Liptchinsky, Vitaliy, Misra, Ishan, Joulin, Armand, Bojanowski, Piotr
Recently, self-supervised learning methods like MoCo, SimCLR, BYOL and SwAV have reduced the gap with supervised methods. These results have been achieved in a control environment, that is the highly curated ImageNet dataset. However, the premise of self-supervised learning is that it can learn from any random image and from any unbounded dataset. In this work, we explore if self-supervision lives to its expectation by training large models on random, uncurated images with no supervision. Our final SElf-supERvised (SEER) model, a RegNetY with 1.3B parameters trained on 1B random images with 512 GPUs achieves 84.2% top-1 accuracy, surpassing the best self-supervised pretrained model by 1% and confirming that self-supervised learning works in a real world setting. Interestingly, we also observe that self-supervised models are good few-shot learners achieving 77.9% top-1 with access to only 10% of ImageNet. Code: https://github.com/facebookresearch/vissl