Goto

Collaborating Authors

 Singh, Harsh


MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.


All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages

arXiv.org Artificial Intelligence

Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.


Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition

arXiv.org Artificial Intelligence

In this article, we introduce a novel problem of audio-visual autism behavior recognition, which includes social behavior recognition, an essential aspect previously omitted in AI-assisted autism screening research. We define the task at hand as one that is audio-visual autism behavior recognition, which uses audio and visual cues, including any speech present in the audio, to recognize autism-related behaviors. To facilitate this new research direction, we collected an audio-visual autism spectrum dataset (AV-ASD), currently the largest video dataset for autism screening using a behavioral approach. It covers an extensive range of autism-associated behaviors, including those related to social communication and interaction. To pave the way for further research on this new problem, we intensively explored leveraging foundation models and multimodal large language models across different modalities. Our experiments on the AV-ASD dataset demonstrate that integrating audio, visual, and speech modalities significantly enhances the performance in autism behavior recognition. Additionally, we explored the use of a post-hoc to ad-hoc pipeline in a multimodal large language model to investigate its potential to augment the model's explanatory capability during autism behavior recognition. We will release our dataset, code, and pre-trained models.