Singh, Amarjeet
Learning Non-Stationary Space-Time Models for Environmental Monitoring
Garg, Sahil, Singh, Amarjeet, Ramos, Fabio
One of the primary aspects of sustainable development involves accurate understanding and modeling of environmental phenomena. Many of these phenomena exhibit variations in both space and time and it is imperative to develop a deeper understanding of techniques that can model space-time dynamics accurately. In this paper we propose NOSTILL-GP - NOn-stationary Space TIme variable Latent Length scale GP, a generic non-stationary, spatio-temporal Gaussian Process (GP) model. We present several strategies, for efficient training of our model, necessary for real-world applicability. Extensive empirical validation is performed using three real-world environmental monitoring datasets, with diverse dynamics across space and time. Results from the experiments clearly demonstrate general applicability and effectiveness of our approach for applications in environmental monitoring.
Adaptive Sensing for Learning Nonstationary Environment Models
Garg, Sahil, Singh, Amarjeet, Ramos, Fabio
Most environmental phenomena, such as wind profiles, ozone concentration and sunlight distribution under a forest canopy, exhibit nonstationary dynamics i.e. phenomenon variation change depending on the location and time of occurrence. Non-stationary dynamics pose both theoretical and practical challenges to statistical machine learning algorithms aiming to accurately capture the complexities governing the evolution of such processes. In this paper, we address the sampling aspects of the problem of learning nonstationary spatio-temporal models, and propose an efficient yet simple algorithm - LISAL. The core idea in LISAL is to learn two models using Gaussian processes (GPs) wherein the first is a nonstationary GP directly modeling the phenomenon. The second model uses a stationary GP representing a latent space corresponding to changes in dynamics, or the nonstationarity characteristics of the first model. LISAL involves adaptively sampling the latent space dynamics using information theory quantities to reduce the computational cost during the learning phase. The relevance of LISAL is extensively validated using multiple real world datasets.
Matrix Factorisation for Scalable Energy Breakdown
Batra, Nipun (IIIT Delhi) | Wang, Hongning (University of Virginia) | Singh, Amarjeet (IIIT Delhi) | Whitehouse, Kamin (University of Virginia)
Homes constitute more than one-thirds of the total energy consumption. Producing an energy breakdown for a home has been shown to reduce household energy consumption by up to 15%, among other benefits. However, existing approaches to produce an energy breakdown require hardware to be installed in each home and are thus prohibitively expensive. In this paper, we propose a novel application of feature-based matrix factorisation that does not require any additional hard- ware installation. The basic premise of our approach is that common design and construction patterns for homes create a repeating structure in their energy data. Thus, a sparse basis can be used to represent energy data from a broad range of homes. We evaluate our approach on 516 homes from a publicly available data set and find it to be more effective than five baseline approaches that either require sensing in each home, or a very rigorous survey across a large number of homes coupled with complex modelling. We also present a deployment of our system as a live web application that can potentially provide energy breakdown to millions of homes.
Efficient Informative Sensing using Multiple Robots
Singh, Amarjeet, Krause, Andreas, Guestrin, Carlos, Kaiser, William J.
The need for efficient monitoring of spatio-temporal dynamics in large environmental applications, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such as limited battery or limited amounts of time to obtain measurements. Thus, careful coordination of their paths is required in order to maximize the amount of information collected, while respecting the resource constraints. In this paper, we present an efficient approach for near-optimally solving the NP-hard optimization problem of planning such informative paths. In particular, we first develop eSIP (efficient Single-robot Informative Path planning), an approximation algorithm for optimizing the path of a single robot. Hereby, we use a Gaussian Process to model the underlying phenomenon, and use the mutual information between the visited locations and remainder of the space to quantify the amount of information collected. We prove that the mutual information collected using paths obtained by using eSIP is close to the information obtained by an optimal solution. We then provide a general technique, sequential allocation, which can be used to extend any single robot planning algorithm, such as eSIP, for the multi-robot problem. This procedure approximately generalizes any guarantees for the single-robot problem to the multi-robot case. We extensively evaluate the effectiveness of our approach on several experiments performed in-field for two important environmental sensing applications, lake and river monitoring, and simulation experiments performed using several real world sensor network data sets.
Learning Non-Stationary Space-Time Models for Environmental Monitoring
Garg, Sahil (IIIT Delhi) | Singh, Amarjeet (IIIT Delhi) | Ramos, Fabio (University of Sydney)
One of the primary aspects of sustainable development involves accurate understanding and modeling of environmental phenomena. Many of these phenomena exhibit variations in both space and time and it is imperative to develop a deeper understanding of techniques that can model space-time dynamics accurately. In this paper we propose NOSTILL-GP - NOn-stationary Space TIme variable Latent Length scale GP, a generic non-stationary, spatio-temporal Gaussian Process (GP) model. We present several strategies, for efficient training of our model, necessary for real-world applicability. Extensive empirical validation is performed using three real-world environmental monitoring datasets, with diverse dynamics across space and time. Results from the experiments clearly demonstrate general applicability and effectiveness of our approach for applications in environmental monitoring.