Singh, Abhishek
Uncovering Semantics and Topics Utilized by Threat Actors to Deliver Malicious Attachments and URLs
Yakymovych, Andrey, Singh, Abhishek
Recent threat reports highlight that email remains the top vector for delivering malware to endpoints. Despite these statistics, detecting malicious email attachments and URLs often neglects semantic cues linguistic features and contextual clues. Our study employs BERTopic unsupervised topic modeling to identify common semantics and themes embedded in email to deliver malicious attachments and call-to-action URLs. We preprocess emails by extracting and sanitizing content and employ multilingual embedding models like BGE-M3 for dense representations, which clustering algorithms(HDBSCAN and OPTICS) use to group emails by semantic similarity. Phi3-Mini-4K-Instruct facilitates semantic and hLDA aid in thematic analysis to understand threat actor patterns. Our research will evaluate and compare different clustering algorithms on topic quantity, coherence, and diversity metrics, concluding with insights into the semantics and topics commonly used by threat actors to deliver malicious attachments and URLs, a significant contribution to the field of threat detection.
Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
Shi, Yichuan, Kotevska, Olivera, Reshniak, Viktor, Singh, Abhishek, Raskar, Ramesh
Federated Learning (FL) has emerged as a leading paradigm for decentralized, privacy preserving machine learning training. However, recent research on gradient inversion attacks (GIAs) have shown that gradient updates in FL can leak information on private training samples. While existing surveys on GIAs have focused on the honest-but-curious server threat model, there is a dearth of research categorizing attacks under the realistic and far more privacy-infringing cases of malicious servers and clients. In this paper, we present a survey and novel taxonomy of GIAs that emphasize FL threat models, particularly that of malicious servers and clients. We first formally define GIAs and contrast conventional attacks with the malicious attacker. We then summarize existing honest-but-curious attack strategies, corresponding defenses, and evaluation metrics. Critically, we dive into attacks with malicious servers and clients to highlight how they break existing FL defenses, focusing specifically on reconstruction methods, target model architectures, target data, and evaluation metrics. Lastly, we discuss open problems and future research directions.
Generalizable and Stable Finetuning of Pretrained Language Models on Low-Resource Texts
Somayajula, Sai Ashish, Liang, Youwei, Singh, Abhishek, Zhang, Li, Xie, Pengtao
Pretrained Language Models (PLMs) have advanced Natural Language Processing (NLP) tasks significantly, but finetuning PLMs on low-resource datasets poses significant challenges such as instability and overfitting. Previous methods tackle these issues by finetuning a strategically chosen subnetwork on a downstream task, while keeping the remaining weights fixed to the pretrained weights. However, they rely on a suboptimal criteria for sub-network selection, leading to suboptimal solutions. To address these limitations, we propose a regularization method based on attention-guided weight mixup for finetuning PLMs. Our approach represents each network weight as a mixup of task-specific weight and pretrained weight, controlled by a learnable attention parameter, providing finer control over sub-network selection. Furthermore, we employ a bi-level optimization (BLO) based framework on two separate splits of the training dataset, improving generalization and combating overfitting. We validate the efficacy of our proposed method through extensive experiments, demonstrating its superiority over previous methods, particularly in the context of finetuning PLMs on low-resource datasets.
CoDream: Exchanging dreams instead of models for federated aggregation with heterogeneous models
Singh, Abhishek, Gupta, Gauri, Kapila, Ritvik, Shi, Yichuan, Dang, Alex, Shankar, Sheshank, Ehab, Mohammed, Raskar, Ramesh
Federated Learning (FL) enables collaborative optimization of machine learning models across decentralized data by aggregating model parameters. Our approach extends this concept by aggregating "knowledge" derived from models, instead of model parameters. We present a novel framework called CoDream, where clients collaboratively optimize randomly initialized data using federated optimization in the input data space, similar to how randomly initialized model parameters are optimized in FL. Our key insight is that jointly optimizing this data can effectively capture the properties of the global data distribution. Sharing knowledge in data space offers numerous benefits: (1) model-agnostic collaborative learning, i.e., different clients can have different model architectures; (2) communication that is independent of the model size, eliminating scalability concerns with model parameters; (3) compatibility with secure aggregation, thus preserving the privacy benefits of federated learning; (4) allowing of adaptive optimization of knowledge shared for personalized learning. We empirically validate CoDream on standard FL tasks, demonstrating competitive performance despite not sharing model parameters. Our code: https://mitmedialab.github.io/codream.github.io/
Scalable Collaborative Learning via Representation Sharing
Berdoz, Frรฉdรฉric, Singh, Abhishek, Jaggi, Martin, Raskar, Ramesh
Privacy-preserving machine learning has become a key conundrum for multi-party artificial intelligence. Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device). In FL, each data holder trains a model locally and releases it to a central server for aggregation. In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation). While relevant in several settings, both of these schemes have a high communication cost, rely on server-level computation algorithms and do not allow for tunable levels of collaboration. In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to ensure that the participants learn similar features on similar classes without sharing their input data. To do so, each client releases averaged last hidden layer activations of similar labels to a central server that only acts as a relay (i.e., is not involved in the training or aggregation of the models). Then, the clients download these last layer activations (feature representations) of the ensemble of users and distill their knowledge in their personal model using a contrastive objective. For cross-device applications (i.e., small local datasets and limited computational capacity), this approach increases the utility of the models compared to independent learning and other federated knowledge distillation (FD) schemes, is communication efficient and is scalable with the number of clients. We prove theoretically that our framework is well-posed, and we benchmark its performance against standard FD and FL on various datasets using different model architectures.
Singularity: Planet-Scale, Preemptible, Elastic Scheduling of AI Workloads
Shukla, Dharma, Sivathanu, Muthian, Viswanatha, Srinidhi, Gulavani, Bhargav, Nehme, Rimma, Agrawal, Amey, Chen, Chen, Kwatra, Nipun, Ramjee, Ramachandran, Sharma, Pankaj, Katiyar, Atul, Modi, Vipul, Sharma, Vaibhav, Singh, Abhishek, Singhal, Shreshth, Welankar, Kaustubh, Xun, Lu, Anupindi, Ravi, Elangovan, Karthik, Rahman, Hasibur, Lin, Zhou, Seetharaman, Rahul, Xu, Cheng, Ailijiang, Eddie, Krishnappa, Suresh, Russinovich, Mark
Lowering costs by driving high utilization across deep learning workloads is a crucial lever for cloud providers. We present Singularity, Microsoft's globally distributed scheduling service for highly-efficient and reliable execution of deep learning training and inference workloads. At the heart of Singularity is a novel, workload-aware scheduler that can transparently preempt and elastically scale deep learning workloads to drive high utilization without impacting their correctness or performance, across a global fleet of AI accelerators (e.g., GPUs, FPGAs). All jobs in Singularity are preemptable, migratable, and dynamically resizable (elastic) by default: a live job can be dynamically and transparently (a) preempted and migrated to a different set of nodes, cluster, data center or a region and resumed exactly from the point where the execution was preempted, and (b) resized (i.e., elastically scaled-up/down) on a varying set of accelerators of a given type. Our mechanisms are transparent in that they do not require the user to make any changes to their code or require using any custom libraries that may limit flexibility. Additionally, our approach significantly improves the reliability of deep learning workloads. We show that the resulting efficiency and reliability gains with Singularity are achieved with negligible impact on the steady-state performance. Finally, our design approach is agnostic of DNN architectures and handles a variety of parallelism strategies (e.g., data/pipeline/model parallelism).
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Karargyris, Alexandros, Umeton, Renato, Sheller, Micah J., Aristizabal, Alejandro, George, Johnu, Bala, Srini, Beutel, Daniel J., Bittorf, Victor, Chaudhari, Akshay, Chowdhury, Alexander, Coleman, Cody, Desinghu, Bala, Diamos, Gregory, Dutta, Debo, Feddema, Diane, Fursin, Grigori, Guo, Junyi, Huang, Xinyuan, Kanter, David, Kashyap, Satyananda, Lane, Nicholas, Mallick, Indranil, Mascagni, Pietro, Mehta, Virendra, Natarajan, Vivek, Nikolov, Nikola, Padoy, Nicolas, Pekhimenko, Gennady, Reddi, Vijay Janapa, Reina, G Anthony, Ribalta, Pablo, Rosenthal, Jacob, Singh, Abhishek, Thiagarajan, Jayaraman J., Wuest, Anna, Xenochristou, Maria, Xu, Daguang, Yadav, Poonam, Rosenthal, Michael, Loda, Massimo, Johnson, Jason M., Mattson, Peter
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform.
DISCO: Dynamic and Invariant Sensitive Channel Obfuscation for deep neural networks
Singh, Abhishek, Chopra, Ayush, Sharma, Vivek, Garza, Ethan, Zhang, Emily, Vepakomma, Praneeth, Raskar, Ramesh
Recent deep learning models have shown remarkable performance in image classification. While these deep learning systems are getting closer to practical deployment, the common assumption made about data is that it does not carry any sensitive information. This assumption may not hold for many practical cases, especially in the domain where an individual's personal information is involved, like healthcare and facial recognition systems. We posit that selectively removing features in this latent space can protect the sensitive information and provide a better privacy-utility trade-off. Consequently, we propose DISCO which learns a dynamic and data driven pruning filter to selectively obfuscate sensitive information in the feature space. We propose diverse attack schemes for sensitive inputs \& attributes and demonstrate the effectiveness of DISCO against state-of-the-art methods through quantitative and qualitative evaluation. Finally, we also release an evaluation benchmark dataset of 1 million sensitive representations to encourage rigorous exploration of novel attack schemes.
FedML: A Research Library and Benchmark for Federated Machine Learning
He, Chaoyang, Li, Songze, So, Jinhyun, Zeng, Xiao, Zhang, Mi, Wang, Hongyi, Wang, Xiaoyang, Vepakomma, Praneeth, Singh, Abhishek, Qiu, Hang, Zhu, Xinghua, Wang, Jianzong, Shen, Li, Zhao, Peilin, Kang, Yan, Liu, Yang, Raskar, Ramesh, Yang, Qiang, Annavaram, Murali, Avestimehr, Salman
Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging. In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at https://fedml.ai.
Privacy in Deep Learning: A Survey
Mireshghallah, Fatemehsadat, Taram, Mohammadkazem, Vepakomma, Praneeth, Singh, Abhishek, Raskar, Ramesh, Esmaeilzadeh, Hadi
The ever-growing advances of deep learning in many areas including vision, recommendation systems, natural language processing, etc., have led to the adoption of Deep Neural Networks (DNNs) in production systems. The availability of large datasets and high computational power are the main contributors to these advances. The datasets are usually crowdsourced and may contain sensitive information. This poses serious privacy concerns as this data can be misused or leaked through various vulnerabilities. Even if the cloud provider and the communication link is trusted, there are still threats of inference attacks where an attacker could speculate properties of the data used for training, or find the underlying model architecture and parameters. In this survey, we review the privacy concerns brought by deep learning, and the mitigating techniques introduced to tackle these issues. We also show that there is a gap in the literature regarding test-time inference privacy, and propose possible future research directions.