Simoes, Stanley
AI and Core Electoral Processes: Mapping the Horizons
P, Deepak, Simoes, Stanley, MacCarthaigh, Muiris
Significant enthusiasm around AI uptake has been witnessed across societies globally. The electoral process -- the time, place and manner of elections within democratic nations -- has been among those very rare sectors in which AI has not penetrated much. Electoral management bodies in many countries have recently started exploring and deliberating over the use of AI in the electoral process. In this paper, we consider five representative avenues within the core electoral process which have potential for AI usage, and map the challenges involved in using AI within them. These five avenues are: voter list maintenance, determining polling booth locations, polling booth protection processes, voter authentication and video monitoring of elections. Within each of these avenues, we lay down the context, illustrate current or potential usage of AI, and discuss extant or potential ramifications of AI usage, and potential directions for mitigating risks while considering AI usage. We believe that the scant current usage of AI within electoral processes provides a very rare opportunity, that of being able to deliberate on the risks and mitigation possibilities, prior to real and widespread AI deployment. This paper is an attempt to map the horizons of risks and opportunities in using AI within the electoral processes and to help shape the debate around the topic.
Content and Context: Two-Pronged Bootstrapped Learning for Regex-Formatted Entity Extraction
Simoes, Stanley (Indian Institute of Technology Madras) | P, Deepak (Queen's University Belfast) | Sairamesh, Munu (Indian Institute of Technology Madras) | Khemani, Deepak (Indian Institute of Technology Madras) | Mehta, Sameep (IBM Research - India)
Regular expressions are an important building block of rule-based information extraction systems. Regexes can encode rules to recognize instances of simple entities which can then feed into the identification of more complex cross-entity relationships. Manually crafting a regex that recognizes all possible instances of an entity is difficult since an entity can manifest in a variety of different forms. Thus, the problem of automatically generalizing manually crafted seed regexes to improve the recall of IE systems has attracted research attention. In this paper, we propose a bootstrapped approach to improve the recall for extraction of regex-formatted entities, with the only source of supervision being the seed regex. Our approach starts from a manually authored high precision seed regex for the entity of interest, and uses the matches of the seed regex and the context around these matches to identify more instances of the entity. These are then used to identify a set of diverse, high recall regexes that are representative of this entity. Through an empirical evaluation over multiple real world document corpora, we illustrate the effectiveness of our approach.