Goto

Collaborating Authors

 Simoes, David


FC Portugal 3D Simulation Team: Team Description Paper 2020

arXiv.org Artificial Intelligence

The FC Portugal 3D team is developed upon the structure of our previous Simulation league 2D/3D teams and our standard platform league team. Our research concerning the robot low-level skills is focused on developing behaviors that may be applied on real robots with minimal adaptation using model-based approaches. Our research on high-level soccer coordination methodologies and team playing is mainly focused on the adaptation of previously developed methodologies from our 2D soccer teams to the 3D humanoid environment and on creating new coordination methodologies based on the previously developed ones. The research-oriented development of our team has been pushing it to be one of the most competitive over the years (World champion in 2000 and Coach Champion in 2002, European champion in 2000 and 2001, Coach 2nd place in 2003 and 2004, European champion in Rescue Simulation and Simulation 3D in 2006, World Champion in Simulation 3D in Bremen 2006 and European champion in 2007, 2012, 2013, 2014 and 2015). This paper describes some of the main innovations of our 3D simulation league team during the last years. A new generic framework for reinforcement learning tasks has also been developed. The current research is focused on improving the above-mentioned framework by developing new learning algorithms to optimize low-level skills, such as running and sprinting. We are also trying to increase student contact by providing reinforcement learning assignments to be completed using our new framework, which exposes a simple interface without sharing low-level implementation details.


Stochastic Search In Changing Situations

AAAI Conferences

Stochastic search algorithms are black-box optimizer of an objective function. They have recently gained a lot of attention in operations research, machine learning and policy search of robot motor skills due to their ease of use and their generality. However, when the task or objective function slightly changes, many stochastic search algorithms require complete re-learning in order to adapt thesolution to the new objective function or the new context. As such, we consider the contextual stochastic search paradigm. Here, we want to find good parameter vectors for multiple related tasks, where each task is described by a continuous context vector. Hence, the objective function might change slightly for each parameter vector evaluation. In this paper, we investigate a contextual stochastic search algorithm known as Contextual Relative Entropy Policy Search (CREPS), an information-theoretic algorithm that can learn from multiple tasks simultaneously. We show the application of CREPS for simulated robotic tasks.