Simoens, Pieter
Predicting change in time production -- A machine learning approach to time perception
Pednekar, Amrapali, Garrido, Alvaro, Khaluf, Yara, Simoens, Pieter
Time perception research has advanced significantly over the years. However, some areas remain largely unexplored. This study addresses two such under-explored areas in timing research: (1) A quantitative analysis of time perception at an individual level, and (2) Time perception in an ecological setting. In this context, we trained a machine learning model to predict the direction of change in an individual's time production. The model's training data was collected using an ecologically valid setup. We moved closer to an ecological setting by conducting an online experiment with 995 participants performing a time production task that used naturalistic videos (no audio) as stimuli. The model achieved an accuracy of 61%. This was 10 percentage points higher than the baseline models derived from cognitive theories of timing. The model performed equally well on new data from a second experiment, providing evidence of its generalization capabilities. The model's output analysis revealed that it also contained information about the magnitude of change in time production. The predictions were further analysed at both population and individual level. It was found that a participant's previous timing performance played a significant role in determining the direction of change in time production. By integrating attentional-gate theories from timing research with feature importance techniques from machine learning, we explained model predictions using cognitive theories of timing. The model and findings from this study have potential applications in systems involving human-computer interactions where understanding and predicting changes in user's time perception can enable better user experience and task performance.
Reward Machine Inference for Robotic Manipulation
Baert, Mattijs, Leroux, Sam, Simoens, Pieter
Learning from Demonstrations (LfD) and Reinforcement Learning (RL) have enabled robot agents to accomplish complex tasks. Reward Machines (RMs) enhance RL's capability to train policies over extended time horizons by structuring high-level task information. In this work, we introduce a novel LfD approach for learning RMs directly from visual demonstrations of robotic manipulation tasks. Unlike previous methods, our approach requires no predefined propositions or prior knowledge of the underlying sparse reward signals. Instead, it jointly learns the RM structure and identifies key high-level events that drive transitions between RM states. We validate our method on vision-based manipulation tasks, showing that the inferred RM accurately captures task structure and enables an RL agent to effectively learn an optimal policy.
Learning Safety Constraints From Demonstration Using One-Class Decision Trees
Baert, Mattijs, Leroux, Sam, Simoens, Pieter
The alignment of autonomous agents with human values is a pivotal challenge when deploying these agents within physical environments, where safety is an important concern. However, defining the agent's objective as a reward and/or cost function is inherently complex and prone to human errors. In response to this challenge, we present a novel approach that leverages one-class decision trees to facilitate learning from expert demonstrations. These decision trees provide a foundation for representing a set of constraints pertinent to the given environment as a logical formula in disjunctive normal form. The learned constraints are subsequently employed within an oracle constrained reinforcement learning framework, enabling the acquisition of a safe policy. In contrast to other methods, our approach offers an interpretable representation of the constraints, a vital feature in safety-critical environments. To validate the effectiveness of our proposed method, we conduct experiments in synthetic benchmark domains and a realistic driving environment.
Maximum Causal Entropy Inverse Constrained Reinforcement Learning
Baert, Mattijs, Mazzaglia, Pietro, Leroux, Sam, Simoens, Pieter
When deploying artificial agents in real-world environments where they interact with humans, it is crucial that their behavior is aligned with the values, social norms or other requirements of that environment. However, many environments have implicit constraints that are difficult to specify and transfer to a learning agent. To address this challenge, we propose a novel method that utilizes the principle of maximum causal entropy to learn constraints and an optimal policy that adheres to these constraints, using demonstrations of agents that abide by the constraints. We prove convergence in a tabular setting and provide an approximation which scales to complex environments. We evaluate the effectiveness of the learned policy by assessing the reward received and the number of constraint violations, and we evaluate the learned cost function based on its transferability to other agents. Our method has been shown to outperform state-of-the-art approaches across a variety of tasks and environments, and it is able to handle problems with stochastic dynamics and a continuous state-action space.
Bayesian policy selection using active inference
รatal, Ozan, Nauta, Johannes, Verbelen, Tim, Simoens, Pieter, Dhoedt, Bart
Learning to take actions based on observations is a core requirement for artificial agents to be able to be successful and robust at their task. Reinforcement Learning (RL) is a well-known technique for learning such policies. However, current RL algorithms often have to deal with reward shaping, have difficulties generalizing to other environments and are most often sample inefficient. In this paper, we explore active inference and the free energy principle, a normative theory from neuroscience that explains how self-organizing biological systems operate by maintaining a model of the world and casting action selection as an inference problem. We apply this concept to a typical problem known to the RL community, the mountain car problem, and show how active inference encompasses both RL and learning from demonstrations.
Privacy Aware Offloading of Deep Neural Networks
Leroux, Sam, Verbelen, Tim, Simoens, Pieter, Dhoedt, Bart
Deep neural networks require large amounts of resources which makes them hard to use on resource constrained devices such as Internet-of-things devices. Offloading the computations to the cloud can circumvent these constraints but introduces a privacy risk since the operator of the cloud is not necessarily trustworthy. We propose a technique that obfuscates the data before sending it to the remote computation node. The obfuscated data is unintelligible for a human eavesdropper but can still be classified with a high accuracy by a neural network trained on unobfuscated images.