Goto

Collaborating Authors

 Simkus, Mantas


Capturing Relational Schemas and Functional Dependencies in RDFS

AAAI Conferences

Mapping relational data to RDF is an important task for the development of the Semantic Web. To this end, the W3C has recently released a Recommendation for the so-called direct mapping of relational data to RDF. In this work, we propose an enrichment of the direct mapping to make it more faithful by transferring also semantic information present in the relational schema from the relational world to the RDF world. We thus introduce expressive identification constraints to capture functional dependencies and define an RDF Normal Form, which precisely captures the classical Boyce-Codd Normal Form of relational schemas.


Managing Change in Graph-Structured Data Using Description Logics

AAAI Conferences

In this paper we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from ensuring the satisfaction of a given set of integrity constraints after a given sequence of updates, to deciding the (non-)existence of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete description of it. We consider a simple action language in which actions are finite sequences of insertions and deletions of nodes and labels, and use Description Logics for describing integrity constraints and (partial) states of the data. We then formalize the data management problems mentioned above as a static verification problem and several planning problems. We provide algorithms and tight complexity bounds for the formalized problems, both for an expressive DL and for a variant of DL-Lite.


Query Rewriting for Horn-SHIQ Plus Rules

AAAI Conferences

Query answering over Description Logic (DL) ontologies has become a vibrant field of research. Efficient realizations often exploit database technology and rewrite a given query to an equivalent SQL or Datalog query over a database associated with the ontology. This approach has been intensively studied for conjunctive query answering in the DL-Lite and EL families, but is much less explored for more expressive DLs and queries. We present a rewriting-based algorithm for conjunctive query answering over Horn-SHIQ ontologies, possibly extended with recursive rules under limited recursion as in DL+log. This setting not only subsumes both DL-Lite and EL, but also yields an algorithm for answering (limited) recursive queries over Horn-SHIQ ontologies (an undecidable problem for full recursive queries). A prototype implementation shows its potential for applications, as experiments exhibit efficient query answering over full Horn-SHIQ ontologies and benign downscaling to DL-Lite, where it is competitive with comparable state of the art systems.