Silva, Ruan
BTS: Harmonizing Specialized Experts into a Generalist LLM
Zhang, Qizhen, Bhargava, Prajjwal, Bi, Chloe, Cai, Chris X., Foerster, Jakob, Fu, Jeremy, Koura, Punit Singh, Silva, Ruan, Shen, Sheng, Dinan, Emily, Gururangan, Suchin, Lewis, Mike
We present Branch-Train-Stitch (BTS), an efficient and flexible training algorithm for combining independently trained large language model (LLM) experts into a single, capable generalist model. Following Li et al., we start with a single seed language model which is branched into domain-specific (e.g., coding or math) experts with continual pretraining. BTS combines experts into a generalist model using lightweight stitch layers, which are inserted between frozen experts and the seed LLM, and trained on a small datamix of the expert domains. Stitch layers enable the seed LLM to integrate representations from any number of experts during the forward pass, allowing it to generalize to new domains, despite remaining frozen. Because BTS does not alter the constituent LLMs, BTS provides a modular and flexible approach: experts can be easily removed and new experts can be added with only a small amount of training. Compared to alternative model merging approaches, BTS yields the best generalist performance on a variety of downstream tasks, retaining the specialized capabilities of each of the experts.
Llama 2: Open Foundation and Fine-Tuned Chat Models
Touvron, Hugo, Martin, Louis, Stone, Kevin, Albert, Peter, Almahairi, Amjad, Babaei, Yasmine, Bashlykov, Nikolay, Batra, Soumya, Bhargava, Prajjwal, Bhosale, Shruti, Bikel, Dan, Blecher, Lukas, Ferrer, Cristian Canton, Chen, Moya, Cucurull, Guillem, Esiobu, David, Fernandes, Jude, Fu, Jeremy, Fu, Wenyin, Fuller, Brian, Gao, Cynthia, Goswami, Vedanuj, Goyal, Naman, Hartshorn, Anthony, Hosseini, Saghar, Hou, Rui, Inan, Hakan, Kardas, Marcin, Kerkez, Viktor, Khabsa, Madian, Kloumann, Isabel, Korenev, Artem, Koura, Punit Singh, Lachaux, Marie-Anne, Lavril, Thibaut, Lee, Jenya, Liskovich, Diana, Lu, Yinghai, Mao, Yuning, Martinet, Xavier, Mihaylov, Todor, Mishra, Pushkar, Molybog, Igor, Nie, Yixin, Poulton, Andrew, Reizenstein, Jeremy, Rungta, Rashi, Saladi, Kalyan, Schelten, Alan, Silva, Ruan, Smith, Eric Michael, Subramanian, Ranjan, Tan, Xiaoqing Ellen, Tang, Binh, Taylor, Ross, Williams, Adina, Kuan, Jian Xiang, Xu, Puxin, Yan, Zheng, Zarov, Iliyan, Zhang, Yuchen, Fan, Angela, Kambadur, Melanie, Narang, Sharan, Rodriguez, Aurelien, Stojnic, Robert, Edunov, Sergey, Scialom, Thomas
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
A Theory on Adam Instability in Large-Scale Machine Learning
Molybog, Igor, Albert, Peter, Chen, Moya, DeVito, Zachary, Esiobu, David, Goyal, Naman, Koura, Punit Singh, Narang, Sharan, Poulton, Andrew, Silva, Ruan, Tang, Binh, Liskovich, Diana, Xu, Puxin, Zhang, Yuchen, Kambadur, Melanie, Roller, Stephen, Zhang, Susan
Training instability reported by Chowdhery et al. [2022] is an interesting phenomenon that has only been reported for the large language models trained on an order of a trillion tokens, posing a threat to further scaling of the AI systems. Chowdhery et al. [2022] have observed dozens of spikes in the loss curve throughout training. To mitigate the issue, they re-started training from a checkpoint roughly 100 steps before the spike started, and skipped roughly 200-500 data batches, in order to exclude batches that were seen right before and during the spike. In that case, the spike of the loss value did not repeat. The spikes were also not observed when the skipped data was fed through the model again after the aforementioned mitigation, which implies that the data itself did not cause the spike, but rather an interference of the data batch with the state of the model training run. The purpose of this work is to rigorously reproduce the experiment with a different hardware and software setup, come up with an explanation for the observed behavior supported by empirical evidence and theoretical arguments, and propose alternative ways of mitigating the issue. Loss spikes are difficult to study because any reproduction of these spikes at a smaller scale is not necessarily caused by or remediated by the same factors as in larger scales. We therefore analyze large-scale language modeling experiments, training four models between 7 billion and 546 billion parameters. The models are decoder-only transformers [Brown et al., 2020, Smith et al., 2022] with different depth and embedding dimensions and trained using the AdamW [Loshchilov and Hutter, 2017] algorithm with a linear learning rate schedule.