Goto

Collaborating Authors

 Silberman, Nathan


Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion

arXiv.org Machine Learning

The predictive performance of supervised learning algorithms depends on the quality of labels. In a typical label collection process, multiple annotators provide subjective noisy estimates of the "truth" under the influence of their varying skill-levels and biases. Blindly treating these noisy labels as the ground truth limits the accuracy of learning algorithms in the presence of strong disagreement. This problem is critical for applications in domains such as medical imaging where both the annotation cost and inter-observer variability are high. In this work, we present a method for simultaneously learning the individual annotator model and the underlying true label distribution, using only noisy observations. Each annotator is modeled by a confusion matrix that is jointly estimated along with the classifier predictions. We propose to add a regularization term to the loss function that encourages convergence to the true annotator confusion matrix. We provide a theoretical argument as to how the regularization is essential to our approach both for the case of single annotator and multiple annotators. Despite the simplicity of the idea, experiments on image classification tasks with both simulated and real labels show that our method either outperforms or performs on par with the state-of-the-art methods and is capable of estimating the skills of annotators even with a single label available per image.


Domain Separation Networks

Neural Information Processing Systems

The cost of large scale data collection and annotation often makes the application of machine learning algorithms to new tasks or datasets prohibitively expensive. One approach circumventing this cost is training models on synthetic data where annotations are provided automatically. Despite their appeal, such models often fail to generalize from synthetic to real images, necessitating domain adaptation algorithms to manipulate these models before they can be successfully applied. Existing approaches focus either on mapping representations from one domain to the other, or on learning to extract features that are invariant to the domain from which they were extracted. However, by focusing only on creating a mapping or shared representation between the two domains, they ignore the individual characteristics of each domain. We hypothesize that explicitly modeling what is unique to each domain can improve a model's ability to extract domain-invariant features. Inspired by work on private-shared component analysis, we explicitly learn to extract image representations that are partitioned into two subspaces: one component which is private to each domain and one which is shared across domains. Our model is trained to not only perform the task we care about in the source domain, but also to use the partitioned representation to reconstruct the images from both domains. Our novel architecture results in a model that outperforms the state-of-the-art on a range of unsupervised domain adaptation scenarios and additionally produces visualizations of the private and shared representations enabling interpretation of the domain adaptation process.


Case for Automated Detection of Diabetic Retinopathy

AAAI Conferences

Diabetic retinopathy, an eye disorder caused by diabetes, is the primary cause of blindness in America and over 99% of cases in India. India and China currently account for over 90 million diabetic patients and are on the verge of an explosion of diabetic populations. This may result in an unprecedented number of persons becoming blind unless diabetic retinopathy can be detected early. Aravind Eye Hospitals is the largest eye care facility in the world, handling over 2 million patients per year. The hospital is on a massive drive throughout southern India to detect diabetic retinopathy at an early stage. To that end, a group of 10-15 physicians are responsible for manually diagnosing over 2 million retinal images per year to detect diabetic retinopathy. While the task is extremely laborious, a large fraction of cases turn out to be normal indicating that much of this time is spent diagnosing completely normal cases. This paper describes our early experiences working with Aravind Eye Hospitals to develop an automated system to detect diabetic retinopathy from retinal images. The automated diabetic retinopathy problem is a hard computer vision problem whose goal is to detect features of retinopathy, such as hemorrhages and exudates, in retinal color fundus images. We describe our initial efforts towards building such a system using a range of computer vision techniques and discuss the potential impact on early detection of diabetic retinopathy.


Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models

Neural Information Processing Systems

Training conditional maximum entropy models on massive data requires significant time and computational resources. In this paper, we investigate three common distributed training strategies: distributed gradient, majority voting ensembles, and parameter mixtures. We analyze the worst-case runtime and resource costs of each and present a theoretical foundation for the convergence of parameters under parameter mixtures, the most efficient strategy. We present large-scale experiments comparing the different strategies and demonstrate that parameter mixtures over independent models use fewer resources and achieve comparable loss as compared to standard approaches.