Sigg, Stephan
Awareness in robotics: An early perspective from the viewpoint of the EIC Pathfinder Challenge "Awareness Inside''
Della Santina, Cosimo, Corbato, Carlos Hernandez, Sisman, Burak, Leiva, Luis A., Arapakis, Ioannis, Vakalellis, Michalis, Vanderdonckt, Jean, D'Haro, Luis Fernando, Manzi, Guido, Becchio, Cristina, Elamrani, Aïda, Alirezaei, Mohsen, Castellano, Ginevra, Dimarogonas, Dimos V., Ghosh, Arabinda, Haesaert, Sofie, Soudjani, Sadegh, Stroeve, Sybert, Verschure, Paul, Bacciu, Davide, Deroy, Ophelia, Bahrami, Bahador, Gallicchio, Claudio, Hauert, Sabine, Sanz, Ricardo, Lanillos, Pablo, Iacca, Giovanni, Sigg, Stephan, Gasulla, Manel, Steels, Luc, Sierra, Carles
Consciousness has been historically a heavily debated topic in engineering, science, and philosophy. On the contrary, awareness had less success in raising the interest of scholars in the past. However, things are changing as more and more researchers are getting interested in answering questions concerning what awareness is and how it can be artificially generated. The landscape is rapidly evolving, with multiple voices and interpretations of the concept being conceived and techniques being developed. The goal of this paper is to summarize and discuss the ones among these voices that are connected with projects funded by the EIC Pathfinder Challenge called "Awareness Inside", a nonrecurring call for proposals within Horizon Europe that was designed specifically for fostering research on natural and synthetic awareness. In this perspective, we dedicate special attention to challenges and promises of applying synthetic awareness in robotics, as the development of mature techniques in this new field is expected to have a special impact on generating more capable and trustworthy embodied systems.
Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition
Zuo, Si, Rey, Vitor Fortes, Suh, Sungho, Sigg, Stephan, Lukowicz, Paul
Recognizing human activities from sensor data is a vital task in various domains, but obtaining diverse and labeled sensor data remains challenging and costly. In this paper, we propose an unsupervised statistical feature-guided diffusion model for sensor-based human activity recognition. The proposed method aims to generate synthetic time-series sensor data without relying on labeled data, addressing the scarcity and annotation difficulties associated with real-world sensor data. By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data. We conducted experiments on public human activity recognition datasets and compared the proposed method to conventional oversampling methods and state-of-the-art generative adversarial network methods. The experimental results demonstrate that the proposed method can improve the performance of human activity recognition and outperform existing techniques.