Goto

Collaborating Authors

 Siddiqi, Kaleem


Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor

arXiv.org Artificial Intelligence

Abstract--Kinesthetic Teaching is a popular approach to collecting expert robotic demonstrations of contact-rich tasks for imitation learning (IL), but it typically only measures motion, ignoring the force placed on the environment by the robot. Furthermore, contact-rich tasks require accurate sensing of both reaching and touching, which can be difficult to provide with conventional sensing modalities. We address these challenges with a See-Through-your-Skin (STS) visuotactile sensor, using the sensor both (i) as a measurement tool to improve kinesthetic teaching, and (ii) as a policy input in contact-rich door manipulation tasks. An STS sensor can be switched between visual and tactile modes by leveraging a semi-transparent surface and controllable lighting, allowing for both pre-contact visual sensing and during-contact tactile sensing with a single sensor. First, we propose tactile force matching, a methodology that enables a robot to match forces read during kinesthetic teaching using tactile signals. Second, we develop a policy that controls STS mode switching, allowing a policy to learn the appropriate moment to switch an STS from its visual to its tactile mode. Finally, we study multiple observation configurations to compare and contrast the value of visual and tactile data from an STS with visual data Figure 1: Our STS sensor before and during contact with a cabinet knob from a wrist-mounted eye-in-hand camera. In visual mode, the camera sees through episodes from real-world manipulation experiments, we find that the gel and allows finding and reaching the knob, while tactile mode the inclusion of force matching raises average policy success rates provides contact-based feedback, via gel deformation and resultant by 62.5%, STS mode switching by 30.3%, and STS data as a dot displacement, upon initial contact and during opening. This dot policy input by 42.5%. Our results highlight the utility of seethrough displacement can also be used to measure a signal linearly related to tactile sensing for IL, both for data collection to allow force. Red circles highlight knob in sensor view.


Efficient Dynamics Modeling in Interactive Environments with Koopman Theory

arXiv.org Artificial Intelligence

The accurate modeling of dynamics in interactive environments is critical for successful long-range prediction. Such a capability could advance Reinforcement Learning (RL) and Planning algorithms, but achieving it is challenging. Inaccuracies in model estimates can compound, resulting in increased errors over long horizons. We approach this problem from the lens of Koopman theory, where the nonlinear dynamics of the environment can be linearized in a high-dimensional latent space. This allows us to efficiently parallelize the sequential problem of long-range prediction using convolution while accounting for the agent's action at every time step. Our approach also enables stability analysis and better control over gradients through time. Taken together, these advantages result in significant improvement over the existing approaches, both in the efficiency and the accuracy of modeling dynamics over extended horizons. We also show that this model can be easily incorporated into dynamics modeling for model-based planning and model-free RL and report promising experimental results.


Medial Spectral Coordinates for 3D Shape Analysis

arXiv.org Artificial Intelligence

In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects represented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applications of computer vision to autonomous driving, medical imaging, and robotics. In these settings, spectral coordinates have shown promise for shape representation due to their ability to incorporate both local and global shape properties in a manner that is qualitatively invariant to isometric transformations. Yet, surprisingly, such coordinates have thus far typically considered only local surface positional or derivative information. In the present article, we propose to equip spectral coordinates with medial (object width) information, so as to enrich them. The key idea is to couple surface points that share a medial ball, via the weights of the adjacency matrix. We develop a spectral feature using this idea, and the algorithms to compute it. The incorporation of object width and medial coupling has direct benefits, as illustrated by our experiments on object classification, object part segmentation, and surface point correspondence.


Mini-batch graphs for robust image classification

arXiv.org Artificial Intelligence

Current deep learning models for classification tasks in computer vision are trained using mini-batches. In the present article, we take advantage of the relationships between samples in a mini-batch, using graph neural networks to aggregate information from similar images. This helps mitigate the adverse effects of alterations to the input images on classification performance. Diverse experiments on image-based object and scene classification show that this approach not only improves a classifier's performance but also increases its robustness to image perturbations and adversarial attacks. Further, we also show that mini-batch graph neural networks can help to alleviate the problem of mode collapse in Generative Adversarial Networks.


Group Equivariant Deep Reinforcement Learning

arXiv.org Artificial Intelligence

In Reinforcement Learning (RL), Convolutional Neural Networks(CNNs) have been successfully applied as function approximators in Deep Q-Learning algorithms, which seek to learn action-value functions and policies in various environments. However, to date, there has been little work on the learning of symmetry-transformation equivariant representations of the input environment state. In this paper, we propose the use of Equivariant CNNs to train RL agents and study their inductive bias for transformation equivariant Q-value approximation. We demonstrate that equivariant architectures can dramatically enhance the performance and sample efficiency of RL agents in a highly symmetric environment while requiring fewer parameters. Additionally, we show that they are robust to changes in the environment caused by affine transformations.


FAN: Focused Attention Networks

arXiv.org Machine Learning

Attention networks show promise for both vision and language tasks, by emphasizing relationships between constituent elements through appropriate weighting functions. Such elements could be regions in an image output by a region proposal network, or words in a sentence, represented by word embedding. Thus far, however, the learning of attention weights has been driven solely by the minimization of task specific loss functions. We here introduce a method of learning attention weights to better emphasize informative pair-wise relations between entities. The key idea is to use a novel center-mass cross entropy loss, which can be applied in conjunction with the task specific ones. We then introduce a focused attention backbone to learn these attention weights for general tasks. We demonstrate that the focused attention module leads to a new state-of-the-art for the recovery of relations in a relationship proposal task. Our experiments show that it also boosts performance for diverse vision and language tasks, including object detection, scene categorization and document classification.