Sicre, Ronan
A Learning Paradigm for Interpretable Gradients
Figueroa, Felipe Torres, Zhang, Hanwei, Sicre, Ronan, Avrithis, Yannis, Ayache, Stephane
Most approaches based on Class Activation Maps (CAM) combine information from fully connected layers and gradient through variants of backpropagation. However, it is well understood that gradients are noisy and alternatives like guided backpropagation have been proposed to obtain better visualization at inference. In this work, we present a novel training approach to improve the quality of gradients for interpretability. In particular, we introduce a regularization loss such that the gradient with respect to the input image obtained by standard backpropagation is similar to the gradient obtained by guided backpropagation. We find that the resulting gradient is qualitatively less noisy and improves quantitatively the interpretability properties of different networks, using several interpretability methods.
Towards Good Practices in Evaluating Transfer Adversarial Attacks
Zhao, Zhengyu, Zhang, Hanwei, Li, Renjue, Sicre, Ronan, Amsaleg, Laurent, Backes, Michael
Transfer adversarial attacks raise critical security concerns in real-world, black-box scenarios. However, the actual progress of this field is difficult to assess due to two common limitations in existing evaluations. First, different methods are often not systematically and fairly evaluated in a one-to-one comparison. Second, only transferability is evaluated but another key attack property, stealthiness, is largely overlooked. In this work, we design good practices to address these limitations, and we present the first comprehensive evaluation of transfer attacks, covering 23 representative attacks against 9 defenses on ImageNet. In particular, we propose to categorize existing attacks into five categories, which enables our systematic category-wise analyses. These analyses lead to new findings that even challenge existing knowledge and also help determine the optimal attack hyperparameters for our attack-wise comprehensive evaluation. We also pay particular attention to stealthiness, by adopting diverse imperceptibility metrics and looking into new, finer-grained characteristics. Overall, our new insights into transferability and stealthiness lead to actionable good practices for future evaluations.