Shuttleworth, Reece
LoRA vs Full Fine-tuning: An Illusion of Equivalence
Shuttleworth, Reece, Andreas, Jacob, Torralba, Antonio, Sharma, Pratyusha
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to match the performance of fully fine-tuned models on various tasks with an extreme reduction in the number of trainable parameters. Even in settings where both methods learn similarly accurate models, \emph{are their learned solutions really equivalent?} We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure; moreover, the fine-tuned models themselves show distinct generalization behaviors when tested outside the adaptation task's distribution. More specifically, we first show that the weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}. Intruder dimensions do not appear during full fine-tuning. Second, we show that LoRA models with intruder dimensions, despite achieving similar performance to full fine-tuning on the target task, become worse models of the pre-training distribution and adapt less robustly to multiple tasks sequentially. Higher-rank, rank-stabilized LoRA models closely mirror full fine-tuning, even when performing on par with lower-rank LoRA models on the same tasks. These results suggest that models updated with LoRA and full fine-tuning access different parts of parameter space, even when they perform equally on the fine-tuned distribution. We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
From Human Days to Machine Seconds: Automatically Answering and Generating Machine Learning Final Exams
Drori, Iddo, Zhang, Sarah J., Shuttleworth, Reece, Zhang, Sarah, Tyser, Keith, Chin, Zad, Lantigua, Pedro, Surbehera, Saisamrit, Hunter, Gregory, Austin, Derek, Tang, Leonard, Hicke, Yann, Simhon, Sage, Karnik, Sathwik, Granberry, Darnell, Udell, Madeleine
A final exam in machine learning at a top institution such as MIT, Harvard, or Cornell typically takes faculty days to write, and students hours to solve. We demonstrate that large language models pass machine learning finals at a human level, on finals available online after the models were trained, and automatically generate new human-quality final exam questions in seconds. Previous work has developed program synthesis and few-shot learning methods to solve university-level problem set questions in mathematics and STEM courses. In this work, we develop and compare methods that solve final exams, which differ from problem sets in several ways: the questions are longer, have multiple parts, are more complicated, and span a broader set of topics. We curate a dataset and benchmark of questions from machine learning final exams available online and code for answering these questions and generating new questions. We show how to generate new questions from other questions and course notes. For reproducibility and future research on this final exam benchmark, we use automatic checkers for multiple-choice, numeric, and questions with expression answers. We perform ablation studies comparing zero-shot learning with few-shot learning and chain-of-thought prompting using GPT-3, OPT, Codex, and ChatGPT across machine learning topics and find that few-shot learning methods perform best. We highlight the transformative potential of language models to streamline the writing and solution of large-scale assessments, significantly reducing the workload from human days to mere machine seconds. Our results suggest that rather than banning large language models such as ChatGPT in class, instructors should teach students to harness them by asking students meta-questions about correctness, completeness, and originality of the responses generated, encouraging critical thinking in academic studies.