Goto

Collaborating Authors

 Shum, Heung-yeung


Classification via Minimum Incremental Coding Length (MICL)

Neural Information Processing Systems

We present a simple new criterion for classification, based on principles from lossy data compression. The criterion assigns a test sample to the class that uses the minimum numberof additional bits to code the test sample, subject to an allowable distortion. We prove asymptotic optimality of this criterion for Gaussian data and analyze its relationships to classical classifiers. Theoretical results provide new insights into relationships among popular classifiers such as MAP and RDA, as well as unsupervised clustering methods based on lossy compression [13]. Minimizing thelossy coding length induces a regularization effect which stabilizes the (implicit) density estimate in a small-sample setting. Compression also provides a uniform means of handling classes of varying dimension. This simple classification criterionand its kernel and local versions perform competitively against existing classifiers on both synthetic examples and real imagery data such as handwritten digitsand human faces, without requiring domain-specific information.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisons of FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between face and nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisons of FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between face and nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.


FloatBoost Learning for Classification

Neural Information Processing Systems

AdaBoost [3] minimizes an upper error bound which is an exponential function of the margin on the training set [14]. However, the ultimate goal in applications of pattern classification is always minimum error rate. On the other hand, AdaBoost needs an effective procedure for learning weak classifiers, which by itself is difficult especially for high dimensional data. In this paper, we present a novel procedure, called FloatBoost, for learning a better boosted classifier. FloatBoost uses a backtrack mechanism after each iteration of AdaBoost to remove weak classifiers which cause higher error rates. The resulting float-boosted classifier consists of fewer weak classifiers yet achieves lower error rates than AdaBoost in both training and test. We also propose a statistical model for learning weak classifiers, based on a stagewise approximation of the posterior using an overcomplete set of scalar features. Experimental comparisonsof FloatBoost and AdaBoost are provided through a difficult classification problem, face detection, where the goal is to learn from training examples a highly nonlinear classifier to differentiate between faceand nonface patterns in a high dimensional space. The results clearly demonstrate the promises made by FloatBoost over AdaBoost.