Shukla, Satya Narayan
A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Gupta, Shashank, Ahuja, Chaitanya, Lin, Tsung-Yu, Roy, Sreya Dutta, Oosterhuis, Harrie, de Rijke, Maarten, Shukla, Satya Narayan
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
CompCap: Improving Multimodal Large Language Models with Composite Captions
Chen, Xiaohui, Shukla, Satya Narayan, Azab, Mahmoud, Singh, Aashu, Wang, Qifan, Yang, David, Peng, ShengYun, Yu, Hanchao, Yan, Shen, Zhang, Xuewen, He, Baosheng
How well can Multimodal Large Language Models (MLLMs) understand composite images? Composite images (CIs) are synthetic visuals created by merging multiple visual elements, such as charts, posters, or screenshots, rather than being captured directly by a camera. While CIs are prevalent in real-world applications, recent MLLM developments have primarily focused on interpreting natural images (NIs). Our research reveals that current MLLMs face significant challenges in accurately understanding CIs, often struggling to extract information or perform complex reasoning based on these images. We find that existing training data for CIs are mostly formatted for question-answer tasks (e.g., in datasets like ChartQA and ScienceQA), while high-quality image-caption datasets, critical for robust vision-language alignment, are only available for NIs. To bridge this gap, we introduce Composite Captions (CompCap), a flexible framework that leverages Large Language Models (LLMs) and automation tools to synthesize CIs with accurate and detailed captions. Using CompCap, we curate CompCap-118K, a dataset containing 118K image-caption pairs across six CI types. We validate the effectiveness of CompCap-118K by supervised fine-tuning MLLMs of three sizes: xGen-MM-inst.-4B and LLaVA-NeXT-Vicuna-7B/13B. Empirical results show that CompCap-118K significantly enhances MLLMs' understanding of CIs, yielding average gains of 1.7%, 2.0%, and 2.9% across eleven benchmarks, respectively.
Universal Pyramid Adversarial Training for Improved ViT Performance
Chiang, Ping-yeh, Zhou, Yipin, Poursaeed, Omid, Shukla, Satya Narayan, Shah, Ashish, Goldstein, Tom, Lim, Ser-Nam
Recently, Pyramid Adversarial training (Herrmann et al., 2022) has been shown to be very effective for improving clean accuracy and distribution-shift robustness of vision transformers. However, due to the iterative nature of adversarial training, the technique is up to 7 times more expensive than standard training. To make the method more efficient, we propose Universal Pyramid Adversarial training, where we learn a single pyramid adversarial pattern shared across the whole dataset instead of the sample-wise patterns. With our proposed technique, we decrease the computational cost of Pyramid Adversarial training by up to 70% while retaining the majority of its benefit on clean performance and distribution-shift robustness. In addition, to the best of our knowledge, we are also the first to find that universal adversarial training can be leveraged to improve clean model performance.
The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants
Bandarkar, Lucas, Liang, Davis, Muller, Benjamin, Artetxe, Mikel, Shukla, Satya Narayan, Husa, Donald, Goyal, Naman, Krishnan, Abhinandan, Zettlemoyer, Luke, Khabsa, Madian
We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.
Heteroscedastic Temporal Variational Autoencoder For Irregularly Sampled Time Series
Shukla, Satya Narayan, Marlin, Benjamin M.
Irregularly sampled time series commonly occur in several domains where they present a significant challenge to standard deep learning models. In this paper, we propose a new deep learning framework for probabilistic interpolation of irregularly sampled time series that we call the Heteroscedastic Temporal Variational Autoencoder (HeTVAE). HeTVAE includes a novel input layer to encode information about input observation sparsity, a temporal VAE architecture to propagate uncertainty due to input sparsity, and a heteroscedastic output layer to enable variable uncertainty in output interpolations. Our results show that the proposed architecture is better able to reflect variable uncertainty through time due to sparse and irregular sampling than a range of baseline and traditional models, as well as recently proposed deep latent variable models that use homoscedastic output layers.
Multi-Time Attention Networks for Irregularly Sampled Time Series
Shukla, Satya Narayan, Marlin, Benjamin M.
Irregular sampling occurs in many time series modeling applications where it presents a significant challenge to standard deep learning models. This work is motivated by the analysis of physiological time series data in electronic health records, which are sparse, irregularly sampled, and multivariate. In this paper, we propose a new deep learning framework for this setting that we call Multi-Time Attention Networks. Multi-Time Attention Networks learn an embedding of continuous time values and use an attention mechanism to produce a fixed-length representation of a time series containing a variable number of observations. We investigate the performance of our framework on interpolation and classification tasks using multiple datasets. Our results show that our approach performs as well or better than a range of baseline and recently proposed models while offering significantly faster training times than current state-of-the-art methods. Irregularly sampled time series occur in applications including healthcare, climate science, ecology, astronomy, biology and others. It is well understood that irregular sampling poses a significant challenge to machine learning models, which typically assume fully-observed, fixed-size feature representations (Yadav et al., 2018). While recurrent neural networks (RNNs) have been widely used to model such data because of their ability to handle variable length sequences, basic RNNs assume regular spacing between observation times as well as alignment of the time points where observations occur for different variables (i.e., fully-observed vectors). In practice, both of these assumptions can fail to hold for real-world sparse and irregularly observed time series.
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series: From Discretization to Attention and Invariance
Shukla, Satya Narayan, Marlin, Benjamin M.
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention, and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes
Shukla, Satya Narayan, Sahu, Anit Kumar, Willmott, Devin, Kolter, J. Zico
We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples for deep learning models solely based on information limited to output labels (hard label) to a queried data input. We use Bayesian optimization (BO) to specifically cater to scenarios involving low query budgets to develop efficient adversarial attacks. Issues with BO's performance in high dimensions are avoided by searching for adversarial examples in structured low-dimensional subspace. Our proposed approach achieves better performance to state of the art black-box adversarial attacks that require orders of magnitude more queries than ours.
Black-box Adversarial Attacks with Bayesian Optimization
Shukla, Satya Narayan, Sahu, Anit Kumar, Willmott, Devin, Kolter, J. Zico
October 1, 2019 Abstract We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples using information limited to loss function evaluations of input-output pairs. We use Bayesian optimization (BO) to specifically cater to scenarios involving low query budgets to develop query efficient adversarial attacks. We alleviate the issues surrounding BO in regards to optimizing high dimensional deep learning models by effective dimension upsampling techniques. Our proposed approach achieves performance comparable to the state of the art black-box adversarial attacks albeit with a much lower average query count. In particular, in low query budget regimes, our proposed method reduces the query count up to 80% with respect to the state of the art methods. 1 Introduction Neural networks are now well-known to be vulnerable to adversarial examples: additive perturbations that, when applied to the input, change the network's output classification [9]. Work investigating this lack of robustness to adversarial examples often takes the form of a back-and-forth between newly proposed adversarial attacks, methods for quickly and efficiently crafting adversarial examples, and corresponding defenses that modify the classifier at either training or test time to improve robustness. The most successful adversarial attacks use gradient-based optimization methods [9, 17], which require complete knowledge of the architecture and parameters of the target network; this assumption is referred to as the white-box attack setting.
Interpolation-Prediction Networks for Irregularly Sampled Time Series
Shukla, Satya Narayan, Marlin, Benjamin M.
In this paper, we present a new deep learning architecture for addressing the problem of supervised learning with sparse and irregularly sampled multivariate time series. The architecture is based on the use of a semi-parametric interpolation network followed by the application of a prediction network. The interpolation network allows for information to be shared across multiple dimensions of a multivariate time series during the interpolation stage, while any standard deep learning model can be used for the prediction network. This work is motivated by the analysis of physiological time series data in electronic health records, which are sparse, irregularly sampled, and multivariate. We investigate the performance of this architecture on both classification and regression tasks, showing that our approach outperforms a range of baseline and recently proposed models. Over the last several years, there has been significant progress in developing specialized models and architectures that can accommodate sparse and irregularly sampled time series as input (Marlin et al., 2012; Li & Marlin, 2015; 2016; Lipton et al., 2016; Futoma et al., 2017; Che et al., 2018a). An irregularly sampled time series is a sequence of samples with irregular intervals between their observation times. Irregularly sampled data are considered to be sparse when the intervals between successive observations are often large. Of particular interest in the supervised learning setting are methods that perform end-to-end learning directly using multivariate sparse and irregularly sampled time series as input without the need for a separate interpolation or imputation step. In this work, we present a new model architecture for supervised learning with multivariate sparse and irregularly sampled data: Interpolation-Prediction Networks. The architecture is based on the use of several semi-parametric interpolation layers organized into an interpolation network, followed by the application of a prediction network that can leverage any standard deep learning model. In this work, we use GRU networks (Chung et al., 2014) as the prediction network.