Goto

Collaborating Authors

 Shu, Chang


Subassembly to Full Assembly: Effective Assembly Sequence Planning through Graph-based Reinforcement Learning

arXiv.org Artificial Intelligence

This paper proposes an assembly sequence planning framework, named Subassembly to Assembly (S2A). The framework is designed to enable a robotic manipulator to assemble multiple parts in a prespecified structure by leveraging object manipulation actions. The primary technical challenge lies in the exponentially increasing complexity of identifying a feasible assembly sequence as the number of parts grows. To address this, we introduce a graph-based reinforcement learning approach, where a graph attention network is trained using a delayed reward assignment strategy. In this strategy, rewards are assigned only when an assembly action contributes to the successful completion of the assembly task. We validate the framework's performance through physics-based simulations, comparing it against various baselines to emphasize the significance of the proposed reward assignment approach. Additionally, we demonstrate the feasibility of deploying our framework in a real-world robotic assembly scenario.


Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand \textit{social} language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The associated resources are released at https://github.com/minjechoi/SOCKET.


Duet: efficient and scalable hybriD neUral rElation undersTanding

arXiv.org Artificial Intelligence

Learned cardinality estimation methods have achieved high precision compared to traditional methods. Among learned methods, query-driven approaches have faced the workload drift problem for a long time. Although both data-driven and hybrid methods are proposed to avoid this problem, most of them suffer from high training and estimation costs, limited scalability, instability, and long-tail distribution problems on high-dimensional tables, which seriously affects the practical application of learned cardinality estimators. In this paper, we prove that most of these problems are directly caused by the widely used progressive sampling. We solve this problem by introducing predicate information into the autoregressive model and propose Duet, a stable, efficient, and scalable hybrid method to estimate cardinality directly without sampling or any non-differentiable process, which can not only reduce the inference complexity from $O(n)$ to $O(1)$ compared to Naru and UAE but also achieve higher accuracy on high cardinality and high-dimensional tables. Experimental results show that Duet can achieve all the design goals above and be much more practical. Besides, Duet even has a lower inference cost on CPU than that of most learned methods on GPU.


POSQA: Probe the World Models of LLMs with Size Comparisons

arXiv.org Artificial Intelligence

Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.


FireAct: Toward Language Agent Fine-tuning

arXiv.org Artificial Intelligence

Recent efforts have augmented language models (LMs) with external tools or environments, leading to the development of language agents that can reason and act. However, most of these agents rely on few-shot prompting techniques with off-the-shelf LMs. In this paper, we investigate and argue for the overlooked direction of fine-tuning LMs to obtain language agents. Using a setup of question answering (QA) with a Google search API, we explore a variety of base LMs, prompting methods, fine-tuning data, and QA tasks, and find language agents are consistently improved after fine-tuning their backbone LMs. For example, fine-tuning Llama2-7B with 500 agent trajectories generated by GPT-4 leads to a 77% HotpotQA performance increase. Furthermore, we propose FireAct, a novel approach to fine-tuning LMs with trajectories from multiple tasks and prompting methods, and show having more diverse fine-tuning data can further improve agents. Along with other findings regarding scaling effects, robustness, generalization, efficiency and cost, our work establishes comprehensive benefits of fine-tuning LMs for agents, and provides an initial set of experimental designs, insights, as well as open questions toward language agent fine-tuning.


Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence

arXiv.org Artificial Intelligence

Title: Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence One sentence summary: An efficient and effective privacy-preserving AI framework is proposed for CT-based COVID-19 diagnosis, based on 9,573 CT scans of 3,336 patients, from 23 hospitals in China and the UK. Abstract Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health. MAIN TEXT Introduction As the gold standard for identifying COVID-19 carriers, reverse transcription-polymerase chain reaction (RT-PCR) is the primary diagnostic modality to detect viral nucleotide in specimens from cases with suspected infection. It has been reported that coronavirus carriers present certain radiological features in chest CTs, including ground-glass opacity, interlobular septal thickening, and consolidation, which can be exploited to identify COVID-19 cases.