Goto

Collaborating Authors

 Shrestha, Rashik


Force Aware Branch Manipulation To Assist Agricultural Tasks

arXiv.org Artificial Intelligence

This study presents a methodology to safely manipulate branches to aid various agricultural tasks. Humans in a real agricultural environment often manipulate branches to perform agricultural tasks effectively, but current agricultural robots lack this capability. This proposed strategy to manipulate branches can aid in different precision agriculture tasks, such as fruit picking in dense foliage, pollinating flowers under occlusion, and moving overhanging vines and branches for navigation. The proposed method modifies RRT* to plan a path that satisfies the branch geometric constraints and obeys branch deformable characteristics. Re-planning is done to obtain a path that helps the robot exert force within a desired range so that branches are not damaged during manipulation. Experimentally, this method achieved a success rate of 78% across 50 trials, successfully moving a branch from different starting points to a target region.


FloPE: Flower Pose Estimation for Precision Pollination

arXiv.org Artificial Intelligence

This study presents Flower Pose Estimation (FloPE), a real-time flower pose estimation framework for computationally constrained robotic pollination systems. Robotic pollination has been proposed to supplement natural pollination to ensure global food security due to the decreased population of natural pollinators. However, flower pose estimation for pollination is challenging due to natural variability, flower clusters, and high accuracy demands due to the flowers' fragility when pollinating. This method leverages 3D Gaussian Splatting to generate photorealistic synthetic datasets with precise pose annotations, enabling effective knowledge distillation from a high-capacity teacher model to a lightweight student model for efficient inference. The approach was evaluated on both single and multi-arm robotic platforms, achieving a mean pose estimation error of 0.6 cm and 19.14 degrees within a low computational cost. Our experiments validate the effectiveness of FloPE, achieving up to 78.75% pollination success rate and outperforming prior robotic pollination techniques.


Residual Learning for Image Point Descriptors

arXiv.org Artificial Intelligence

Local image feature descriptors have had a tremendous impact on the development and application of computer vision methods. It is therefore unsurprising that significant efforts are being made for learning-based image point descriptors. However, the advantage of learned methods over handcrafted methods in real applications is subtle and more nuanced than expected. Moreover, handcrafted descriptors such as SIFT and SURF still perform better point localization in Structure-from-Motion (SfM) compared to many learned counterparts. In this paper, we propose a very simple and effective approach to learning local image descriptors by using a hand-crafted detector and descriptor. Specifically, we choose to learn only the descriptors, supported by handcrafted descriptors while discarding the point localization head. We optimize the final descriptor by leveraging the knowledge already present in the handcrafted descriptor. Such an approach of optimization allows us to discard learning knowledge already present in non-differentiable functions such as the hand-crafted descriptors and only learn the residual knowledge in the main network branch. This offers 50X convergence speed compared to the standard baseline architecture of SuperPoint while at inference the combined descriptor provides superior performance over the learned and hand-crafted descriptors. This is done with minor increase in the computations over the baseline learned descriptor. Our approach has potential applications in ensemble learning and learning with non-differentiable functions. We perform experiments in matching, camera localization and Structure-from-Motion in order to showcase the advantages of our approach.