Goto

Collaborating Authors

 Shpitser, Ilya


Segregated Graphs and Marginals of Chain Graph Models

Neural Information Processing Systems

Bayesian networks are a popular representation of asymmetric (for example causal) relationships between random variables. Markov random fields (MRFs) are a complementary model of symmetric relationships used in computer vision, spatial modeling, and social and gene expression networks. A chain graph model under the Lauritzen-Wermuth-Frydenberg interpretation (hereafter a chain graph model) generalizes both Bayesian networks and MRFs, and can represent asymmetric and symmetric relationships together.As in other graphical models, the set of marginals from distributions in a chain graph model induced by the presence of hidden variables forms a complex model. One recent approach to the study of marginal graphical models is to consider a well-behaved supermodel. Such a supermodel of marginals of Bayesian networks, defined only by conditional independences, and termed the ordinary Markov model, was studied at length in (Evans and Richardson, 2014).In this paper, we show that special mixed graphs which we call segregated graphs can be associated, via a Markov property, with supermodels of a marginal of chain graphs defined only by conditional independences. Special features of segregated graphs imply the existence of a very natural factorization for these supermodels, and imply many existing results on the chain graph model, and ordinary Markov model carry over. Our results suggest that segregated graphs define an analogue of the ordinary Markov model for marginals of chain graph models.


Sparse Nested Markov models with Log-linear Parameters

arXiv.org Machine Learning

Hidden variables are ubiquitous in practical data analysis, and therefore modeling marginal densities and doing inference with the resulting models is an important problem in statistics, machine learning, and causal inference. Recently, a new type of graphical model, called the nested Markov model, was developed which captures equality constraints found in marginals of directed acyclic graph (DAG) models. Some of these constraints, such as the so called `Verma constraint', strictly generalize conditional independence. To make modeling and inference with nested Markov models practical, it is necessary to limit the number of parameters in the model, while still correctly capturing the constraints in the marginal of a DAG model. Placing such limits is similar in spirit to sparsity methods for undirected graphical models, and regression models. In this paper, we give a log-linear parameterization which allows sparse modeling with nested Markov models. We illustrate the advantages of this parameterization with a simulation study.


On the definition of a confounder

arXiv.org Artificial Intelligence

The causal inference literature has provided a clear formal definition of confounding expressed in terms of counterfactual independence. The literature has not, however, come to any consensus on a formal definition of a confounder, as it has given priority to the concept of confounding over that of a confounder. We consider a number of candidate definitions arising from various more informal statements made in the literature. We consider the properties satisfied by each candidate definition, principally focusing on (i) whether under the candidate definition control for all "confounders" suffices to control for "confounding" and (ii) whether each confounder in some context helps eliminate or reduce confounding bias. Several of the candidate definitions do not have these two properties. Only one candidate definition of those considered satisfies both properties. We propose that a "confounder" be defined as a pre-exposure covariate C for which there exists a set of other covariates X such that effect of the exposure on the outcome is unconfounded conditional on (X,C) but such that for no proper subset of (X,C) is the effect of the exposure on the outcome unconfounded given the subset. We also provide a conditional analogue of the above definition; and we propose a variable that helps reduce bias but not eliminate bias be referred to as a "surrogate confounder." These definitions are closely related to those given by Robins and Morgenstern [Comput. Math. Appl. 14 (1987) 869-916]. The implications that hold among the various candidate definitions are discussed.


Parameter and Structure Learning in Nested Markov Models

arXiv.org Machine Learning

The constraints arising from DAG models with latent variables can be naturally represented by means of acyclic directed mixed graphs (ADMGs). Such graphs contain directed and bidirected arrows, and contain no directed cycles. DAGs with latent variables imply independence constraints in the distribution resulting from a 'fixing' operation, in which a joint distribution is divided by a conditional. This operation generalizes marginalizing and conditioning. Some of these constraints correspond to identifiable 'dormant' independence constraints, with the well known 'Verma constraint' as one example. Recently, models defined by a set of the constraints arising after fixing from a DAG with latents, were characterized via a recursive factorization and a nested Markov property. In addition, a parameterization was given in the discrete case. In this paper we use this parameterization to describe a parameter fitting algorithm, and a search and score structure learning algorithm for these nested Markov models. We apply our algorithms to a variety of datasets.


Identification of Conditional Interventional Distributions

arXiv.org Artificial Intelligence

The subject of this paper is the elucidation of effects of actions from causal assumptions represented as a directed graph, and statistical knowledge given as a probability distribution. In particular, we are interested in predicting conditional distributions resulting from performing an action on a set of variables and, subsequently, taking measurements of another set. We provide a necessary and sufficient graphical condition for the cases where such distributions can be uniquely computed from the available information, as well as an algorithm which performs this computation whenever the condition holds. Furthermore, we use our results to prove completeness of do-calculus [Pearl, 1995] for the same identification problem.


What Counterfactuals Can Be Tested

arXiv.org Artificial Intelligence

Counterfactual statements, e.g., "my headache would be gone had I taken an aspirin" are central to scientific discourse, and are formally interpreted as statements derived from "alternative worlds". However, since they invoke hypothetical states of affairs, often incompatible with what is actually known or observed, testing counterfactuals is fraught with conceptual and practical difficulties. In this paper, we provide a complete characterization of "testable counterfactuals," namely, counterfactual statements whose probabilities can be inferred from physical experiments. We provide complete procedures for discerning whether a given counterfactual is testable and, if so, expressing its probability in terms of experimental data.


Effects of Treatment on the Treated: Identification and Generalization

arXiv.org Artificial Intelligence

Many applications of causal analysis call for assessing, retrospectively, the effect of withholding an action that has in fact been implemented. This counterfactual quantity, sometimes called "effect of treatment on the treated," (ETT) have been used to to evaluate educational programs, critic public policies, and justify individual decision making. In this paper we explore the conditions under which ETT can be estimated from (i.e., identified in) experimental and/or observational studies. We show that, when the action invokes a singleton variable, the conditions for ETT identification have simple characterizations in terms of causal diagrams. We further give a graphical characterization of the conditions under which the effects of multiple treatments on the treated can be identified, as well as ways in which the ETT estimand can be constructed from both interventional and observational distributions.


An Efficient Algorithm for Computing Interventional Distributions in Latent Variable Causal Models

arXiv.org Machine Learning

Probabilistic inference in graphical models is the task of computing marginal and conditional densities of interest from a factorized representation of a joint probability distribution. Inference algorithms such as variable elimination and belief propagation take advantage of constraints embedded in this factorization to compute such densities efficiently. In this paper, we propose an algorithm which computes interventional distributions in latent variable causal models represented by acyclic directed mixed graphs(ADMGs). To compute these distributions efficiently, we take advantage of a recursive factorization which generalizes the usual Markov factorization for DAGs and the more recent factorization for ADMGs. Our algorithm can be viewed as a generalization of variable elimination to the mixed graph case. We show our algorithm is exponential in the mixed graph generalization of treewidth.


Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features

AAAI Conferences

There have been many efforts to identify causal graphical features such as directed edges between random variables from observational data. Recently, Tian et al. proposed a new dynamic programming algorithm which computes marginalized posterior probabilities of directed edge features over all the possible structures in O( n 3 n ) time when the number of parents per node is bounded by a constant, where n is the number of variables of interest. However the main drawback of this approach is that deciding a single appropriate threshold for the existence of the directed edge feature is difficult due to the scale difference of the posterior probabilities between the directed edges forming v- structures and the directed edges not forming v -structures. We claim that computing posterior probabilities of both adjacencies and v -structures is necessary and more effective for discovering causal graphical features, since it allows us to find a single appropriate decision threshold for the existence of the feature that we are testing. For efficient computation, we provide a novel dynamic programming algorithm which computes the posterior probabilities of all of n ( n – 1)/2 adjacency and n ( n –1 choose 2) v -structure features in O( n 3 * 3 n ) time.


Identity Uncertainty and Citation Matching

Neural Information Processing Systems

Identity uncertainty is a pervasive problem in real-world data analysis. It arises whenever objects are not labeled with unique identifiers or when those identifiers may not be perceived perfectly. In such cases, two observations mayor may not correspond to the same object. In this paper, we consider the problem in the context of citation matching--the problem ofdeciding which citations correspond to the same publication. Our approach is based on the use of a relational probability model to define a generative model for the domain, including models of author and title corruption and a probabilistic citation grammar. Identity uncertainty is handled by extending standard models to incorporate probabilities over the possible mappings between terms in the language and objects in the domain. Inference is based on Markov chain Monte Carlo, augmented with specific methods for generating efficient proposals when the domain contains many objects. Results on several citation data sets show that the method outperforms current algorithms for citation matching. The declarative, relational nature of the model also means that our algorithm can determine object characteristics such as author names by combining multiple citations of multiple papers.