Goto

Collaborating Authors

 Shlomov, Segev


Towards Enterprise-Ready Computer Using Generalist Agent

arXiv.org Artificial Intelligence

This paper presents our ongoing work toward developing an enterprise-ready Computer Using Generalist Agent (CUGA) system. Our research highlights the evolutionary nature of building agentic systems suitable for enterprise environments. By integrating state-of-the-art agentic AI techniques with a systematic approach to iterative evaluation, analysis, and refinement, we have achieved rapid and cost-effective performance gains, notably reaching a new state-of-the-art performance on the WebArena benchmark. We detail our development roadmap, the methodology and tools that facilitated rapid learning from failures and continuous system refinement, and discuss key lessons learned and future challenges for enterprise adoption.


ST-WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents

arXiv.org Artificial Intelligence

Recent advancements in Web agents have introduced novel architectures and benchmarks showcasing progress in autonomous web navigation and interaction. However, most existing benchmarks prioritize effectiveness and accuracy, overlooking factors like safety and trustworthiness which are essential for deploying web agents in enterprise settings. We present STWebAgentBench, a benchmark designed to evaluate web agents safety and trustworthiness across six critical dimensions, essential for reliability in enterprise applications. This benchmark is grounded in a detailed framework that defines safe and trustworthy (ST) agent behavior. Our work extends WebArena with safety templates and evaluation functions to assess safety policy compliance rigorously. We introduce the Completion Under Policy to measure task success while adhering to policies, alongside the Risk Ratio, which quantifies policy violations across dimensions, providing actionable insights to address safety gaps. Our evaluation reveals that current SOTA agents struggle with policy adherence and cannot yet be relied upon for critical business applications. We open-source this benchmark and invite the community to contribute, with the goal of fostering a new generation of safer, more trustworthy AI agents. All code, data, environment reproduction resources, and video demonstrations are available at https://sites.google.com/view/st-webagentbench/home.


SNAP: Semantic Stories for Next Activity Prediction

arXiv.org Artificial Intelligence

Predicting the next activity in an ongoing process is one of the most common classification tasks in the business process management (BPM) domain. It allows businesses to optimize resource allocation, enhance operational efficiency, and aids in risk mitigation and strategic decision-making. This provides a competitive edge in the rapidly evolving confluence of BPM and AI. Existing state-of-the-art AI models for business process prediction do not fully capitalize on available semantic information within process event logs. As current advanced AI-BPM systems provide semantically-richer textual data, the need for novel adequate models grows. To address this gap, we propose the novel SNAP method that leverages language foundation models by constructing semantic contextual stories from the process historical event logs and using them for the next activity prediction. We compared the SNAP algorithm with nine state-of-the-art models on six benchmark datasets and show that SNAP significantly outperforms them, especially for datasets with high levels of semantic content.


Mimicking the Maestro: Exploring the Efficacy of a Virtual AI Teacher in Fine Motor Skill Acquisition

arXiv.org Artificial Intelligence

Motor skills, especially fine motor skills like handwriting, play an essential role in academic pursuits and everyday life. Traditional methods to teach these skills, although effective, can be time-consuming and inconsistent. With the rise of advanced technologies like robotics and artificial intelligence, there is increasing interest in automating such teaching processes using these technologies, via human-robot and human-computer interactions. In this study, we examine the potential of a virtual AI teacher in emulating the techniques of human educators for motor skill acquisition. We introduce an AI teacher model that captures the distinct characteristics of human instructors. Using a Reinforcement Learning environment tailored to mimic teacher-learner interactions, we tested our AI model against four guiding hypotheses, emphasizing improved learner performance, enhanced rate of skill acquisition, and reduced variability in learning outcomes. Our findings, validated on synthetic learners, revealed significant improvements across all tested hypotheses. Notably, our model showcased robustness across different learners and settings and demonstrated adaptability to handwriting. This research underscores the potential of integrating Reinforcement Learning and Imitation Learning models with robotics in revolutionizing the teaching of critical motor skills.


Enhancing Trust in LLM-Based AI Automation Agents: New Considerations and Future Challenges

arXiv.org Artificial Intelligence

Trust in AI agents has been extensively studied in the literature, resulting in significant advancements in our understanding of this field. However, the rapid advancements in Large Language Models (LLMs) and the emergence of LLM-based AI agent frameworks pose new challenges and opportunities for further research. In the field of process automation, a new generation of AI-based agents has emerged, enabling the execution of complex tasks. At the same time, the process of building automation has become more accessible to business users via user-friendly no-code tools and training mechanisms. This paper explores these new challenges and opportunities, analyzes the main aspects of trust in AI agents discussed in existing literature, and identifies specific considerations and challenges relevant to this new generation of automation agents. We also evaluate how nascent products in this category address these considerations. Finally, we highlight several challenges that the research community should address in this evolving landscape.


Prescriptive Process Monitoring in Intelligent Process Automation with Chatbot Orchestration

arXiv.org Artificial Intelligence

Business processes that involve AI-powered automation have been gaining importance and market share in recent years. These business processes combine the characteristics of classical business process management, goal-driven chatbots, conversational recommendation systems, and robotic process automation. In the new context, prescriptive process monitoring demands innovative approaches. Unfortunately, data logs from these new processes are still not available in the public domain. We describe the main challenges in this new domain and introduce a synthesized dataset that is based on an actual use case of intelligent process automation with chatbot orchestration. Using this dataset, we demonstrate crowd-wisdom and goal-driven approaches to prescriptive process monitoring.


Understanding the Properties of Generated Corpora

arXiv.org Artificial Intelligence

Models for text generation have become focal for many research tasks and especially for the generation of sentence corpora. However, understanding the properties of an automatically generated text corpus remains challenging. We propose a set of tools that examine the properties of generated text corpora. Applying these tools on various generated corpora allowed us to gain new insights into the properties of the generative models. As part of our characterization process, we found remarkable differences in the corpora generated by two leading generative technologies.