Shiralkar, Prashant
Effective Proxy for Human Labeling: Ensemble Disagreement Scores in Large Language Models for Industrial NLP
Du, Wei, Advani, Laksh, Gambhir, Yashmeet, Perry, Daniel J, Shiralkar, Prashant, Xing, Zhengzheng, Colak, Aaron
More recently, (Fu et al., 2023) natural language processing (NLP) tasks using creates a meta-model responsible for predicting the latest generative pretrained models such as the accuracy of the LLM model using the model's GPT (OpenAI, 2023; Ouyang et al., 2022), PaLM confidence scores as features. Methods from the (Chowdhery et al., 2022), and many others (Touvron computer vision (CV) domain to assess unlabeled et al., 2023; Bai et al., 2022; Penedo et al., data more generally have, for example, proposed 2023; Taori et al., 2023). This new generation of the average threshold confidence method that learns models opens up many new possibilities including a threshold over the model's confidence, predicting competitive performance in zero-shot and few-shot accuracy as the fraction of unlabeled examples settings for tasks that have typically been modeled exceeding that threshold (Garg et al., 2022), or iteratively using a supervised setting (OpenAI, 2023). More learn an ensemble of models to identify established language models (BERT (Devlin et al., misclassified data points and perform self-training 2019), RoBERTa (Liu et al., 2019), XLM-Roberta to improve the ensemble with the identified points (Conneau et al., 2020b), etc.) provide a strong balance (Chen et al., 2021). However, the metrics and hyperparameters of inference cost and task performance for in previous works are specifically for such systems. This broad class of large language classification tasks and cannot be easily extended models (LLMs) used for complex supervised NLP to more complex tasks.
CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web
Lockard, Colin, Dong, Xin Luna, Einolghozati, Arash, Shiralkar, Prashant
The web contains countless semi-structured websites, which can be a rich source of information for populating knowledge bases. Existing methods for extracting relations from the DOM trees of semi-structured webpages can achieve high precision and recall only when manual annotations for each website are available. Although there have been efforts to learn extractors from automatically-generated labels, these methods are not sufficiently robust to succeed in settings with complex schemas and information-rich websites. In this paper we present a new method for automatic extraction from semi-structured websites based on distant supervision. We automatically generate training labels by aligning an existing knowledge base with a web page and leveraging the unique structural characteristics of semi-structured websites. We then train a classifier based on the potentially noisy and incomplete labels to predict new relation instances. Our method can compete with annotation-based techniques in the literature in terms of extraction quality. A large-scale experiment on over 400,000 pages from dozens of multi-lingual long-tail websites harvested 1.25 million facts at a precision of 90%.
The DARPA Twitter Bot Challenge
Subrahmanian, V. S., Azaria, Amos, Durst, Skylar, Kagan, Vadim, Galstyan, Aram, Lerman, Kristina, Zhu, Linhong, Ferrara, Emilio, Flammini, Alessandro, Menczer, Filippo, Stevens, Andrew, Dekhtyar, Alexander, Gao, Shuyang, Hogg, Tad, Kooti, Farshad, Liu, Yan, Varol, Onur, Shiralkar, Prashant, Vydiswaran, Vinod, Mei, Qiaozhu, Hwang, Tim
A number of organizations ranging from terrorist groups such as ISIS to politicians and nation states reportedly conduct explicit campaigns to influence opinion on social media, posing a risk to democratic processes. There is thus a growing need to identify and eliminate "influence bots" - realistic, automated identities that illicitly shape discussion on sites like Twitter and Facebook - before they get too influential. Spurred by such events, DARPA held a 4-week competition in February/March 2015 in which multiple teams supported by the DARPA Social Media in Strategic Communications program competed to identify a set of previously identified "influence bots" serving as ground truth on a specific topic within Twitter. Past work regarding influence bots often has difficulty supporting claims about accuracy, since there is limited ground truth (though some exceptions do exist [3,7]). However, with the exception of [3], no past work has looked specifically at identifying influence bots on a specific topic. This paper describes the DARPA Challenge and describes the methods used by the three top-ranked teams.