Goto

Collaborating Authors

 Shirado, Hirokazu


Spontaneous Giving and Calculated Greed in Language Models

arXiv.org Artificial Intelligence

Large language models demonstrate advanced problem-solving capabilities by incorporating reasoning techniques such as chain of thought and reflection. However, how these reasoning capabilities extend to social intelligence remains unclear. In this study, we investigate this question using economic games that model social dilemmas, where social intelligence plays a crucial role. First, we examine the effects of chain-of-thought and reflection techniques in a public goods game. We then extend our analysis to six economic games on cooperation and punishment, comparing off-the-shelf non-reasoning and reasoning models. We find that reasoning models significantly reduce cooperation and norm enforcement, prioritizing individual rationality. Consequently, groups with more reasoning models exhibit less cooperation and lower gains through repeated interactions. These behaviors parallel human tendencies of "spontaneous giving and calculated greed." Our results suggest the need for AI architectures that incorporate social intelligence alongside reasoning capabilities to ensure that AI supports, rather than disrupts, human cooperative intuition. Recent innovations in reasoning techniques, such as chain of thought [1] and reflection [2], are advancing the intellectual capabilities of large language models (LLMs) to the next level. Models such as OpenAI o1 leverage these techniques to solve complex problems, generate coherent arguments, and improve decision-making in multi-step reasoning scenarios [3-5]. Indeed, these reasoning models have demonstrated excellence in mathematical proofs, logical deduction, and strategic planning [6, 7]. The necessity of social intelligence is highlighted in social dilemmas, where individual rationality leads to collective irrationality [12].


Actions Speak Louder than Words: Agent Decisions Reveal Implicit Biases in Language Models

arXiv.org Artificial Intelligence

While advances in fairness and alignment have helped mitigate overt biases exhibited by large language models (LLMs) when explicitly prompted, we hypothesize that these models may still exhibit implicit biases when simulating human behavior. To test this hypothesis, we propose a technique to systematically uncover such biases across a broad range of sociodemographic categories by assessing decision-making disparities among agents with LLM-generated, sociodemographically-informed personas. Using our technique, we tested six LLMs across three sociodemographic groups and four decision-making scenarios. Our results show that state-of-the-art LLMs exhibit significant sociodemographic disparities in nearly all simulations, with more advanced models exhibiting greater implicit biases despite reducing explicit biases. Furthermore, when comparing our findings to real-world disparities reported in empirical studies, we find that the biases we uncovered are directionally aligned but markedly amplified. This directional alignment highlights the utility of our technique in uncovering systematic biases in LLMs rather than random variations; moreover, the presence and amplification of implicit biases emphasizes the need for novel strategies to address these biases.


Deconstructing Cooperation and Ostracism via Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Cooperation is challenging in biological systems, human societies, and multi-agent systems in general. While a group can benefit when everyone cooperates, it is tempting for each agent to act selfishly instead. Prior human studies show that people can overcome such social dilemmas while choosing interaction partners, i.e., strategic network rewiring. However, little is known about how agents, including humans, can learn about cooperation from strategic rewiring and vice versa. Here, we perform multi-agent reinforcement learning simulations in which two agents play the Prisoner's Dilemma game iteratively. Each agent has two policies: one controls whether to cooperate or defect; the other controls whether to rewire connections with another agent. This setting enables us to disentangle complex causal dynamics between cooperation and network rewiring. We find that network rewiring facilitates mutual cooperation even when one agent always offers cooperation, which is vulnerable to free-riding. We then confirm that the network-rewiring effect is exerted through agents' learning of ostracism, that is, connecting to cooperators and disconnecting from defectors. However, we also find that ostracism alone is not sufficient to make cooperation emerge. Instead, ostracism emerges from the learning of cooperation, and existing cooperation is subsequently reinforced due to the presence of ostracism. Our findings provide insights into the conditions and mechanisms necessary for the emergence of cooperation with network rewiring.