Goto

Collaborating Authors

 Shim, Byonghyo


Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments

arXiv.org Artificial Intelligence

Deep learning (DL) has made notable progress in addressing complex radio access network control challenges that conventional analytic methods have struggled to solve. However, DL has shown limitations in solving constrained NP-hard problems often encountered in network optimization, such as those involving quality of service (QoS) or discrete variables like user indices. Current solutions rely on domain-specific architectures or heuristic techniques, and a general DL approach for constrained optimization remains undeveloped. Moreover, even minor changes in communication objectives demand time-consuming retraining, limiting their adaptability to dynamic environments where task objectives, constraints, environmental factors, and communication scenarios frequently change. To address these challenges, we propose a large language model for resource allocation optimizer (LLM-RAO), a novel approach that harnesses the capabilities of LLMs to address the complex resource allocation problem while adhering to QoS constraints. By employing a prompt-based tuning strategy to flexibly convey ever-changing task descriptions and requirements to the LLM, LLM-RAO demonstrates robust performance and seamless adaptability in dynamic environments without requiring extensive retraining. Simulation results reveal that LLM-RAO achieves up to a 40% performance enhancement compared to conventional DL methods and up to an $80$\% improvement over analytical approaches. Moreover, in scenarios with fluctuating communication objectives, LLM-RAO attains up to 2.9 times the performance of traditional DL-based networks.


Learning Primitive Relations for Compositional Zero-Shot Learning

arXiv.org Artificial Intelligence

Compositional Zero-Shot Learning (CZSL) aims to identify unseen state-object compositions by leveraging knowledge learned from seen compositions. Existing approaches often independently predict states and objects, overlooking their relationships. In this paper, we propose a novel framework, learning primitive relations (LPR), designed to probabilistically capture the relationships between states and objects. By employing the cross-attention mechanism, LPR considers the dependencies between states and objects, enabling the model to infer the likelihood of unseen compositions. Experimental results demonstrate that LPR outperforms state-of-the-art methods on all three CZSL benchmark datasets in both closed-world and open-world settings. Through qualitative analysis, we show that LPR leverages state-object relationships for unseen composition prediction.


Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models

arXiv.org Artificial Intelligence

Recently, we have observed that Large Multi-modal Models (LMMs) are revolutionizing the way machines interact with the world, unlocking new possibilities across various multi-modal applications. To adapt LMMs for downstream tasks, parameter-efficient fine-tuning (PEFT) which only trains additional prefix tokens or modules, has gained popularity. Nevertheless, there has been little analysis of how PEFT works in LMMs. In this paper, we delve into the strengths and weaknesses of each tuning strategy, shifting the focus from the efficiency typically associated with these approaches. We first discover that model parameter tuning methods such as LoRA and Adapters distort the feature representation space learned during pre-training and limit the full utilization of pre-trained knowledge. We also demonstrate that prefix-tuning excels at preserving the representation space, despite its lower performance on downstream tasks. These findings suggest a simple two-step PEFT strategy called Prefix-Tuned PEFT (PT-PEFT), which successively performs prefix-tuning and then PEFT (i.e., Adapter, LoRA), combines the benefits of both. Experimental results show that PT-PEFT not only improves performance in image captioning and visual question answering compared to vanilla PEFT methods but also helps preserve the representation space of the four pre-trained models.


Deep Learning-Assisted Parallel Interference Cancellation for Grant-Free NOMA in Machine-Type Communication

arXiv.org Artificial Intelligence

In this paper, we present a novel approach for joint activity detection (AD), channel estimation (CE), and data detection (DD) in uplink grant-free non-orthogonal multiple access (NOMA) systems. Our approach employs an iterative and parallel interference removal strategy inspired by parallel interference cancellation (PIC), enhanced with deep learning to jointly tackle the AD, CE, and DD problems. Based on this approach, we develop three PIC frameworks, each of which is designed for either coherent or non-coherence schemes. The first framework performs joint AD and CE using received pilot signals in the coherent scheme. Building upon this framework, the second framework utilizes both the received pilot and data signals for CE, further enhancing the performances of AD, CE, and DD in the coherent scheme. The third framework is designed to accommodate the non-coherent scheme involving a small number of data bits, which simultaneously performs AD and DD. Through joint loss functions and interference cancellation modules, our approach supports end-to-end training, contributing to enhanced performances of AD, CE, and DD for both coherent and non-coherent schemes. Simulation results demonstrate the superiority of our approach over traditional techniques, exhibiting enhanced performances of AD, CE, and DD while maintaining lower computational complexity.


Deep Learning-based Beam Tracking for Millimeter-wave Communications under Mobility

arXiv.org Artificial Intelligence

In this paper, we propose a deep learning-based beam tracking method for millimeter-wave (mmWave)communications. Beam tracking is employed for transmitting the known symbols using the sounding beams and tracking time-varying channels to maintain a reliable communication link. When the pose of a user equipment (UE) device varies rapidly, the mmWave channels also tend to vary fast, which hinders seamless communication. Thus, models that can capture temporal behavior of mmWave channels caused by the motion of the device are required, to cope with this problem. Accordingly, we employa deep neural network to analyze the temporal structure and patterns underlying in the time-varying channels and the signals acquired by inertial sensors. We propose a model based on long short termmemory (LSTM) that predicts the distribution of the future channel behavior based on a sequence of input signals available at the UE. This channel distribution is used to 1) control the sounding beams adaptively for the future channel state and 2) update the channel estimate through the measurement update step under a sequential Bayesian estimation framework. Our experimental results demonstrate that the proposed method achieves a significant performance gain over the conventional beam tracking methods under various mobility scenarios.