Shih, Fuming
Contextual Commonsense Knowledge Acquisition from Social Content by Crowd-Sourcing Explanations
Kuo, Yen-Ling (National Taiwan University) | Hsu, Jane Yung-jen (National Taiwan University) | Shih, Fuming (Massachusetts Institute of Technology)
Contextual knowledge is essential in answering questions given specific observations. While recent approaches to building commonsense knowledge basesvia text mining and/or crowdsourcing are successful,contextual knowledge is largely missing. To addressthis gap, this paper presents SocialExplain, a novel approach to acquiring contextual commonsense knowledge from explanations of social content. The acquisition process is broken into two cognitively simple tasks:to identify contextual clues from the given social content, and to explain the content with the clues. An experiment was conducted to show that multiple piecesof contextual commonsense knowledge can be identi-fied from a small number of tweets. Online users verified that 92.45% of the acquired sentences are good,and 95.92% are new sentences compared with existingcrowd-sourced commonsense knowledge bases.
GlobalIdentifier: Unexpected Personal Social Content with Data on the Web
Paradesi, Sharon (Massachusetts Institute of Technology) | Shih, Fuming (Massachusetts Institute of Technology)
The past year has seen a growing public awareness of the privacy risks of social networking through personal information that people voluntarily disclose. A spotlight has accordingly been turned on the disclosure policies of social networking sites and on mechanisms for restricting access to personal information on Facebook and other sites. But this is not sufficient to address privacy concerns in a world where Web-based data mining tools can let anyone infer information about others by combining data from multiple sources. To illustrate this, we are building a demonstration data miner, GlobalInferencer, that makes inferences about an individual?s lifestyle and other behavior. GlobalInferencer uses linked data technology to perform unified searches across Facebook, Flickr, and public data sites. It demonstrates that controlling access to personal information on individual social networking sites is not an adequate framework for protecting privacy, or even for supporting valid inferencing. In addition to access restrictions, there must be mechanisms for maintaining the provenance of information combined from multiple sources, for revealing the context within which information is presented, and for respecting the accountability that determines how information should be used.