Shih, Frank Y.
Medical X-Ray Image Enhancement Using Global Contrast-Limited Adaptive Histogram Equalization
Nia, Sohrab Namazi, Shih, Frank Y.
In medical imaging, accurate diagnosis heavily relies on effective image enhancement techniques, particularly for X-ray images. Existing methods often suffer from various challenges such as sacrificing global image characteristics over local image characteristics or vice versa. In this paper, we present a novel approach, called G-CLAHE (Global-Contrast Limited Adaptive Histogram Equalization), which perfectly suits medical imaging with a focus on X-rays. This method adapts from Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to take both advantages and avoid weakness to preserve local and global characteristics. Experimental results show that it can significantly improve current state-of-the-art algorithms to effectively address their limitations and enhance the contrast and quality of X-ray images for diagnostic accuracy.
Perspective Transformation Layer
Khatri, Nishan, Dasgupta, Agnibh, Shen, Yucong, Zhong, Xin, Shih, Frank Y.
Incorporating geometric transformations that reflect the relative position changes between an observer and an object into computer vision and deep learning models has attracted much attention in recent years. However, the existing proposals mainly focus on the affine transformation that is insufficient to reflect such geometric position changes. Furthermore, current solutions often apply a neural network module to learn a single transformation matrix, which not only ignores the importance of multi-view analysis but also includes extra training parameters from the module apart from the transformation matrix parameters that increase the model complexity. In this paper, a perspective transformation layer is proposed in the context of deep learning. The proposed layer can learn homography, therefore reflecting the geometric positions between observers and objects. In addition, by directly training its transformation matrices, a single proposed layer can learn an adjustable number of multiple viewpoints without considering module parameters. The experiments and evaluations confirm the superiority of the proposed layer.