Goto

Collaborating Authors

 Shigeto, Yutaro


Rethinking Loss Functions for Fact Verification

arXiv.org Artificial Intelligence

We explore loss functions for fact verification in the FEVER shared task. While the cross-entropy loss is a standard objective for training verdict predictors, it fails to capture the heterogeneity among the FEVER verdict classes. In this paper, we develop two task-specific objectives tailored to FEVER. Experimental results confirm that the proposed objective functions outperform the standard cross-entropy. Performance is further improved when these objectives are combined with simple class weighting, which effectively overcomes the imbalance in the training data. The souce code is available at https://github.com/yuta-mukobara/RLF-KGAT


Action Class Relation Detection and Classification Across Multiple Video Datasets

arXiv.org Artificial Intelligence

The Meta Video Dataset (MetaVD) provides annotated relations between action classes in major datasets for human action recognition in videos. Although these annotated relations enable dataset augmentation, it is only applicable to those covered by MetaVD. For an external dataset to enjoy the same benefit, the relations between its action classes and those in MetaVD need to be determined. To address this issue, we consider two new machine learning tasks: action class relation detection and classification. We propose a unified model to predict relations between action classes, using language and visual information associated with classes. Experimental results show that (i) pre-trained recent neural network models for texts and videos contribute to high predictive performance, (ii) the relation prediction based on action label texts is more accurate than based on videos, and (iii) a blending approach that combines predictions by both modalities can further improve the predictive performance in some cases.


Learning Decorrelated Representations Efficiently Using Fast Fourier Transform

arXiv.org Artificial Intelligence

Barlow Twins and VICReg are self-supervised representation learning models that use regularizers to decorrelate features. Although these models are as effective as conventional representation learning models, their training can be computationally demanding if the dimension d of the projected embeddings is high. As the regularizers are defined in terms of individual elements of a cross-correlation or covariance matrix, computing the loss for n samples takes O(n d^2) time. In this paper, we propose a relaxed decorrelating regularizer that can be computed in O(n d log d) time by Fast Fourier Transform. We also propose an inexpensive technique to mitigate undesirable local minima that develop with the relaxation. The proposed regularizer exhibits accuracy comparable to that of existing regularizers in downstream tasks, whereas their training requires less memory and is faster for large d. The source code is available.


A Fast and Easy Regression Technique for k-NN Classification Without Using Negative Pairs

arXiv.org Machine Learning

This paper proposes an inexpensive way to learn an effective dissimilarity function to be used for $k$-nearest neighbor ($k$-NN) classification. Unlike Mahalanobis metric learning methods that map both query (unlabeled) objects and labeled objects to new coordinates by a single transformation, our method learns a transformation of labeled objects to new points in the feature space whereas query objects are kept in their original coordinates. This method has several advantages over existing distance metric learning methods: (i) In experiments with large document and image datasets, it achieves $k$-NN classification accuracy better than or at least comparable to the state-of-the-art metric learning methods. (ii) The transformation can be learned efficiently by solving a standard ridge regression problem. For document and image datasets, training is often more than two orders of magnitude faster than the fastest metric learning methods tested. This speed-up is also due to the fact that the proposed method eliminates the optimization over "negative" object pairs, i.e., objects whose class labels are different. (iii) The formulation has a theoretical justification in terms of reducing hubness in data.


Ridge Regression, Hubness, and Zero-Shot Learning

arXiv.org Machine Learning

This paper discusses the effect of hubness in zero-shot learning, when ridge regression is used to find a mapping between the example space to the label space. Contrary to the existing approach, which attempts to find a mapping from the example space to the label space, we show that mapping labels into the example space is desirable to suppress the emergence of hubs in the subsequent nearest neighbor search step. Assuming a simple data model, we prove that the proposed approach indeed reduces hubness. This was verified empirically on the tasks of bilingual lexicon extraction and image labeling: hubness was reduced with both of these tasks and the accuracy was improved accordingly.