Goto

Collaborating Authors

 Shi, Zenghui


The infrastructure powering IBM's Gen AI model development

arXiv.org Artificial Intelligence

AI Infrastructure plays a key role in the speed and cost-competitiveness of developing and deploying advanced AI models. The current demand for powerful AI infrastructure for model training is driven by the emergence of generative AI and foundational models, where on occasion thousands of GPUs must cooperate on a single training job for the model to be trained in a reasonable time. Delivering efficient and high-performing AI training requires an end-to-end solution that combines hardware, software and holistic telemetry to cater for multiple types of AI workloads. In this report, we describe IBM's hybrid cloud infrastructure that powers our generative AI model development. This infrastructure includes (1) Vela: an AI-optimized supercomputing capability directly integrated into the IBM Cloud, delivering scalable, dynamic, multi-tenant and geographically distributed infrastructure for large-scale model training and other AI workflow steps and (2) Blue Vela: a large-scale, purpose-built, on-premises hosting environment that is optimized to support our largest and most ambitious AI model training tasks. Vela provides IBM with the dual benefit of high performance for internal use along with the flexibility to adapt to an evolving commercial landscape. Blue Vela provides us with the benefits of rapid development of our largest and most ambitious models, as well as future-proofing against the evolving model landscape in the industry. Taken together, they provide IBM with the ability to rapidly innovate in the development of both AI models and commercial offerings.


Global 4D Ionospheric STEC Prediction based on DeepONet for GNSS Rays

arXiv.org Artificial Intelligence

The ionosphere is a vitally dynamic charged particle region in the Earth's upper atmosphere, playing a crucial role in applications such as radio communication and satellite navigation. The Slant Total Electron Contents (STEC) is an important parameter for characterizing wave propagation, representing the integrated electron density along the ray of radio signals passing through the ionosphere. The accurate prediction of STEC is essential for mitigating the ionospheric impact particularly on Global Navigation Satellite Systems (GNSS). In this work, we propose a high-precision STEC prediction model named DeepONet-STEC, which learns nonlinear operators to predict the 4D temporal-spatial integrated parameter for specified ground station - satellite ray path globally. As a demonstration, we validate the performance of the model based on GNSS observation data for global and US-CORS regimes under ionospheric quiet and storm conditions. The DeepONet-STEC model results show that the three-day 72 hour prediction in quiet periods could achieve high accuracy using observation data by the Precise Point Positioning (PPP) with temporal resolution 30s. Under active solar magnetic storm periods, the DeepONet-STEC also demonstrated its robustness and superiority than traditional deep learning methods. This work presents a neural operator regression architecture for predicting the 4D temporal-spatial ionospheric parameter for satellite navigation system performance, which may be further extended for various space applications and beyond.