Shi, Yinghuan
Taste More, Taste Better: Diverse Data and Strong Model Boost Semi-Supervised Crowd Counting
Yang, Maochen, Li, Zekun, Zhang, Jian, Qi, Lei, Shi, Yinghuan
Semi-supervised crowd counting is crucial for addressing the high annotation costs of densely populated scenes. Although several methods based on pseudo-labeling have been proposed, it remains challenging to effectively and accurately utilize unlabeled data. In this paper, we propose a novel framework called Taste More Taste Better (TMTB), which emphasizes both data and model aspects. Firstly, we explore a data augmentation technique well-suited for the crowd counting task. By inpainting the background regions, this technique can effectively enhance data diversity while preserving the fidelity of the entire scenes. Secondly, we introduce the Visual State Space Model as backbone to capture the global context information from crowd scenes, which is crucial for extremely crowded, low-light, and adverse weather scenarios. In addition to the traditional regression head for exact prediction, we employ an Anti-Noise classification head to provide less exact but more accurate supervision, since the regression head is sensitive to noise in manual annotations. We conduct extensive experiments on four benchmark datasets and show that our method outperforms state-of-the-art methods by a large margin. Code is publicly available on https://github.com/syhien/taste_more_taste_better.
Balanced Direction from Multifarious Choices: Arithmetic Meta-Learning for Domain Generalization
Wang, Xiran, Zhang, Jian, Qi, Lei, Shi, Yinghuan
Domain generalization is proposed to address distribution shift, arising from statistical disparities between training source and unseen target domains. The widely used first-order meta-learning algorithms demonstrate strong performance for domain generalization by leveraging the gradient matching theory, which aims to establish balanced parameters across source domains to reduce overfitting to any particular domain. However, our analysis reveals that there are actually numerous directions to achieve gradient matching, with current methods representing just one possible path. These methods actually overlook another critical factor that the balanced parameters should be close to the centroid of optimal parameters of each source domain. T o address this, we propose a simple yet effective arithmetic meta-learning with arithmetic-weighted gradients. This approach, while adhering to the principles of gradient matching, promotes a more precise balance by estimating the centroid between domain-specific optimal parameters.
Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
Ma, Qinghe, Zhang, Jian, Qi, Lei, Yu, Qian, Shi, Yinghuan, Gao, Yang
Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS). In this scenario, we handle data from multiple medical centers, with limited annotations available for a single domain and a large amount of unlabeled data from multiple domains. We found that the key to solving the problem lies in how to generate reliable pseudo labels for the unlabeled data in the presence of domain shift with labeled data. To tackle this issue, we employ Unified Copy-Paste (UCP) between images to construct intermediate domains, facilitating the knowledge transfer from the domain of labeled data to the domains of unlabeled data. To fully utilize the information within the intermediate domain, we propose a symmetric Guidance training strategy (SymGD), which additionally offers direct guidance to unlabeled data by merging pseudo labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. Compared with existing state-of-the-art approaches, our method achieves a notable 13.57% improvement in Dice score on Prostate dataset, as demonstrated on three public datasets. Our code is available at https://github.com/MQinghe/MiDSS .
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with Pseudo-Label and Gaussian Process Guidance
Chen, Taicai, Duan, Yue, Li, Dong, Qi, Lei, Shi, Yinghuan, Gao, Yang
Variational Autoencoder based Bayesian Optimization (VAE-BO) has demonstrated its excellent performance in addressing high-dimensional structured optimization problems. However, current mainstream methods overlook the potential of utilizing a pool of unlabeled data to construct the latent space, while only concentrating on designing sophisticated models to leverage the labeled data. Despite their effective usage of labeled data, these methods often require extra network structures, additional procedure, resulting in computational inefficiency. To address this issue, we propose a novel method to effectively utilize unlabeled data with the guidance of labeled data. Specifically, we tailor the pseudo-labeling technique from semi-supervised learning to explicitly reveal the relative magnitudes of optimization objective values hidden within the unlabeled data. Based on this technique, we assign appropriate training weights to unlabeled data to enhance the construction of a discriminative latent space. Furthermore, we treat the VAE encoder and the Gaussian Process (GP) in Bayesian optimization as a unified deep kernel learning process, allowing the direct utilization of labeled data, which we term as Gaussian Process guidance. This directly and effectively integrates the goal of improving GP accuracy into the VAE training, thereby guiding the construction of the latent space. The extensive experiments demonstrate that our proposed method outperforms existing VAE-BO algorithms in various optimization scenarios. Our code will be published at https://github.com/TaicaiChen/PG-LBO.
Roll With the Punches: Expansion and Shrinkage of Soft Label Selection for Semi-supervised Fine-Grained Learning
Duan, Yue, Zhao, Zhen, Qi, Lei, Zhou, Luping, Wang, Lei, Shi, Yinghuan
While semi-supervised learning (SSL) has yielded promising results, the more realistic SSL scenario remains to be explored, in which the unlabeled data exhibits extremely high recognition difficulty, e.g., fine-grained visual classification in the context of SSL (SS-FGVC). The increased recognition difficulty on fine-grained unlabeled data spells disaster for pseudo-labeling accuracy, resulting in poor performance of the SSL model. To tackle this challenge, we propose Soft Label Selection with Confidence-Aware Clustering based on Class Transition Tracking (SoC) by reconstructing the pseudo-label selection process by jointly optimizing Expansion Objective and Shrinkage Objective, which is based on a soft label manner. Respectively, the former objective encourages soft labels to absorb more candidate classes to ensure the attendance of ground-truth class, while the latter encourages soft labels to reject more noisy classes, which is theoretically proved to be equivalent to entropy minimization. In comparisons with various state-of-the-art methods, our approach demonstrates its superior performance in SS-FGVC. Checkpoints and source code are available at https://github.com/NJUyued/SoC4SS-FGVC.
A Theoretical Explanation of Activation Sparsity through Flat Minima and Adversarial Robustness
Peng, Ze, Qi, Lei, Shi, Yinghuan, Gao, Yang
A recent empirical observation (Li et al., 2022b) of activation sparsity in MLP blocks offers an opportunity to drastically reduce computation costs for free. Although having attributed it to training dynamics, existing theoretical explanations of activation sparsity are restricted to shallow networks, small training steps and special training, despite its emergence in deep models standardly trained for a large number of steps. To fill these gaps, we propose the notion of gradient sparsity as one source of activation sparsity and a theoretical explanation based on it that sees sparsity a necessary step to adversarial robustness w.r.t. hidden features and parameters, which is approximately the flatness of minima for well-learned models. The theory applies to standardly trained LayerNorm-ed MLPs, and further to Transformers or other architectures trained with weight noises. Eliminating other sources of flatness except for sparsity, we discover the phenomenon that the ratio between the largest and smallest non-zero singular values of weight matrices is small. When discussing the emergence of this spectral concentration, we use random matrix theory (RMT) as a powerful tool to analyze stochastic gradient noises. Validational experiments are conducted to verify our gradient-sparsity-based explanation. We propose two plug-and-play modules for both training and finetuning for sparsity. Experiments on ImageNet-1k and C4 demonstrate their 50% sparsity improvements, indicating further potential cost reduction in both training and inference.
PLACE dropout: A Progressive Layer-wise and Channel-wise Dropout for Domain Generalization
Guo, Jintao, Qi, Lei, Shi, Yinghuan, Gao, Yang
Domain generalization (DG) aims to learn a generic model from multiple observed source domains that generalizes well to arbitrary unseen target domains without further training. The major challenge in DG is that the model inevitably faces a severe overfitting issue due to the domain gap between source and target domains. To mitigate this problem, some dropout-based methods have been proposed to resist overfitting by discarding part of the representation of the intermediate layers. However, we observe that most of these methods only conduct the dropout operation in some specific layers, leading to an insufficient regularization effect on the model. We argue that applying dropout at multiple layers can produce stronger regularization effects, which could alleviate the overfitting problem on source domains more adequately than previous layer-specific dropout methods. In this paper, we develop a novel layer-wise and channel-wise dropout for DG, which randomly selects one layer and then randomly selects its channels to conduct dropout. Particularly, the proposed method can generate a variety of data variants to better deal with the overfitting issue. We also provide theoretical analysis for our dropout method and prove that it can effectively reduce the generalization error bound. Besides, we leverage the progressive scheme to increase the dropout ratio with the training progress, which can gradually boost the difficulty of training the model to enhance its robustness. Extensive experiments on three standard benchmark datasets have demonstrated that our method outperforms several state-of-the-art DG methods. Our code is available at https://github.com/lingeringlight/PLACEdropout.
IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint Inliers and Outliers Utilization
Li, Zekun, Qi, Lei, Shi, Yinghuan, Gao, Yang
Semi-supervised learning (SSL) aims to leverage massive unlabeled data when labels are expensive to obtain. Unfortunately, in many real-world applications, the collected unlabeled data will inevitably contain unseen-class outliers not belonging to any of the labeled classes. To deal with the challenging open-set SSL task, the mainstream methods tend to first detect outliers and then filter them out. However, we observe a surprising fact that such approach could result in more severe performance degradation when labels are extremely scarce, as the unreliable outlier detector may wrongly exclude a considerable portion of valuable inliers. To tackle with this issue, we introduce a novel open-set SSL framework, IOMatch, which can jointly utilize inliers and outliers, even when it is difficult to distinguish exactly between them. Specifically, we propose to employ a multi-binary classifier in combination with the standard closed-set classifier for producing unified open-set classification targets, which regard all outliers as a single new class. By adopting these targets as open-set pseudo-labels, we optimize an open-set classifier with all unlabeled samples including both inliers and outliers. Extensive experiments have shown that IOMatch significantly outperforms the baseline methods across different benchmark datasets and different settings despite its remarkable simplicity. Our code and models are available at https://github.com/nukezil/IOMatch.
A Multilayer Framework for Online Metric Learning
Li, Wenbin, Liu, Yanfang, Huo, Jing, Shi, Yinghuan, Gao, Yang, Wang, Lei, Luo, Jiebo
Online metric learning has been widely applied in classification and retrieval. It can automatically learn a suitable metric from data by restricting similar instances to be separated from dissimilar instances with a given margin. However, the existing online metric learning algorithms have limited performance in real-world classifications, especially when data distributions are complex. To this end, this paper proposes a multilayer framework for online metric learning to capture the nonlinear similarities among instances. Different from the traditional online metric learning, which can only learn one metric space, the proposed Multi-Layer Online Metric Learning (MLOML) takes an online metric learning algorithm as a metric layer and learns multiple hierarchical metric spaces, where each metric layer follows a nonlinear layers for the complicated data distribution. Moreover, the forward propagation (FP) strategy and backward propagation (BP) strategy are employed to train the hierarchical metric layers. To build a metric layer of the proposed MLOML, a new Mahalanobis-based Online Metric Learning (MOML) algorithm is presented based on the passive-aggressive strategy and one-pass triplet construction strategy. Furthermore, in a progressively and nonlinearly learning way, MLOML has a stronger learning ability than traditional online metric learning in the case of limited available training data. To make the learning process more explainable and theoretically guaranteed, theoretical analysis is provided. The proposed MLOML enjoys several nice properties, indeed learns a metric progressively, and performs better on the benchmark datasets. Extensive experiments with different settings have been conducted to verify these properties of the proposed MLOML.
Towards Semi-supervised Learning with Non-random Missing Labels
Duan, Yue, Zhao, Zhen, Qi, Lei, Zhou, Luping, Wang, Lei, Shi, Yinghuan
Semi-supervised learning (SSL) tackles the label missing problem by enabling the effective usage of unlabeled data. While existing SSL methods focus on the traditional setting, a practical and challenging scenario called label Missing Not At Random (MNAR) is usually ignored. In MNAR, the labeled and unlabeled data fall into different class distributions resulting in biased label imputation, which deteriorates the performance of SSL models. In this work, class transition tracking based Pseudo-Rectifying Guidance (PRG) is devised for MNAR. We explore the class-level guidance information obtained by the Markov random walk, which is modeled on a dynamically created graph built over the class tracking matrix. PRG unifies the historical information of class distribution and class transitions caused by the pseudo-rectifying procedure to maintain the model's unbiased enthusiasm towards assigning pseudo-labels to all classes, so as the quality of pseudo-labels on both popular classes and rare classes in MNAR could be improved. Finally, we show the superior performance of PRG across a variety of MNAR scenarios, outperforming the latest SSL approaches combining bias removal solutions by a large margin. Code and model weights are available at https://github.com/NJUyued/PRG4SSL-MNAR.