Goto

Collaborating Authors

 Shi, Yichun


Dual Diffusion for Unified Image Generation and Understanding

arXiv.org Artificial Intelligence

Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.


HQ-Edit: A High-Quality Dataset for Instruction-based Image Editing

arXiv.org Artificial Intelligence

This study introduces HQ-Edit, a high-quality instruction-based image editing dataset with around 200,000 edits. Unlike prior approaches relying on attribute guidance or human feedback on building datasets, we devise a scalable data collection pipeline leveraging advanced foundation models, namely GPT-4V and DALL-E 3. To ensure its high quality, diverse examples are first collected online, expanded, and then used to create high-quality diptychs featuring input and output images with detailed text prompts, followed by precise alignment ensured through post-processing. In addition, we propose two evaluation metrics, Alignment and Coherence, to quantitatively assess the quality of image edit pairs using GPT-4V. HQ-Edits high-resolution images, rich in detail and accompanied by comprehensive editing prompts, substantially enhance the capabilities of existing image editing models. For example, an HQ-Edit finetuned InstructPix2Pix can attain state-of-the-art image editing performance, even surpassing those models fine-tuned with human-annotated data. The project page is https://thefllood.github.io/HQEdit_web.


Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion

arXiv.org Artificial Intelligence

Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization ($\sim15$min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)


X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention

arXiv.org Artificial Intelligence

We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation. Specifically, given a single portrait as appearance reference, we aim to animate it with motion derived from a driving video, capturing both highly dynamic and subtle facial expressions along with wide-range head movements. As its core, we leverage the generative prior of a pre-trained diffusion model as the rendering backbone, while achieve fine-grained head pose and expression control with novel controlling signals within the framework of ControlNet. In contrast to conventional coarse explicit controls such as facial landmarks, our motion control module is learned to interpret the dynamics directly from the original driving RGB inputs. The motion accuracy is further enhanced with a patch-based local control module that effectively enhance the motion attention to small-scale nuances like eyeball positions. Notably, to mitigate the identity leakage from the driving signals, we train our motion control modules with scaling-augmented cross-identity images, ensuring maximized disentanglement from the appearance reference modules. Experimental results demonstrate the universal effectiveness of X-Portrait across a diverse range of facial portraits and expressive driving sequences, and showcase its proficiency in generating captivating portrait animations with consistently maintained identity characteristics.


Handling Data Heterogeneity in Federated Learning via Knowledge Distillation and Fusion

arXiv.org Artificial Intelligence

Federated learning (FL) supports distributed training of a global machine learning model across multiple devices with the help of a central server. However, data heterogeneity across different devices leads to the client model drift issue and results in model performance degradation and poor model fairness. To address the issue, we design Federated learning with global-local Knowledge Fusion (FedKF) scheme in this paper. The key idea in FedKF is to let the server return the global knowledge to be fused with the local knowledge in each training round so that the local model can be regularized towards the global optima. Therefore, the client model drift issue can be mitigated. In FedKF, we first propose the active-inactive model aggregation technique that supports a precise global knowledge representation. Then, we propose a data-free knowledge distillation (KD) approach to enable each client model to learn the global knowledge (embedded in the global model) while each client model can still learn the local knowledge (embedded in the local dataset) simultaneously, thereby realizing the global-local knowledge fusion process. The theoretical analysis and intensive experiments demonstrate the superiority of FedKF over previous solutions.


Federated Learning with Domain Generalization

arXiv.org Artificial Intelligence

Federated Learning (FL) enables a group of clients to jointly train a machine learning model with the help of a centralized server. Clients do not need to submit their local data to the server during training, and hence the local training data of clients is protected. In FL, distributed clients collect their local data independently, so the dataset of each client may naturally form a distinct source domain. In practice, the model trained over multiple source domains may have poor generalization performance on unseen target domains. To address this issue, we propose FedADG to equip federated learning with domain generalization capability. FedADG employs the federated adversarial learning approach to measure and align the distributions among different source domains via matching each distribution to a reference distribution. The reference distribution is adaptively generated (by accommodating all source domains) to minimize the domain shift distance during alignment. In FedADG, the alignment is fine-grained since each class is aligned independently. In this way, the learned feature representation is supposed to be universal, so it can generalize well on the unseen domains. Intensive experiments on various datasets demonstrate that FedADG has comparable performance with the state-of-the-art.