Shi, Yan
Optimizing food taste sensory evaluation through neural network-based taste electroencephalogram channel selection
Xia, Xiuxin, Wang, Qun, Wang, He, Liu, Chenrui, Li, Pengwei, Shi, Yan, Men, Hong
The taste electroencephalogram (EEG) evoked by the taste stimulation can reflect different brain patterns and be used in applications such as sensory evaluation of food. However, considering the computational cost and efficiency, EEG data with many channels has to face the critical issue of channel selection. This paper proposed a channel selection method called class activation mapping with attention (CAM-Attention). The CAM-Attention method combined a convolutional neural network with channel and spatial attention (CNN-CSA) model with a gradient-weighted class activation mapping (Grad-CAM) model. The CNN-CSA model exploited key features in EEG data by attention mechanism, and the Grad-CAM model effectively realized the visualization of feature regions. Then, channel selection was effectively implemented based on feature regions. Finally, the CAM-Attention method reduced the computational burden of taste EEG recognition and effectively distinguished the four tastes. In short, it has excellent recognition performance and provides effective technical support for taste sensory evaluation.
Sampling and active learning methods for network reliability estimation using K-terminal spanning tree
Ding, Chen, Wei, Pengfei, Shi, Yan, Liu, Jinxing, Broggi, Matteo, Beer, Michael
Network reliability analysis remains a challenge due to the increasing size and complexity of networks. This paper presents a novel sampling method and an active learning method for efficient and accurate network reliability estimation under node failure and edge failure scenarios. The proposed sampling method adopts Monte Carlo technique to sample component lifetimes and the K-terminal spanning tree algorithm to accelerate structure function computation. Unlike existing methods that compute only one structure function value per sample, our method generates multiple component state vectors and corresponding structure function values from each sample. Network reliability is estimated based on survival signatures derived from these values. A transformation technique extends this method to handle both node failure and edge failure. To enhance efficiency of proposed sampling method and achieve adaptability to network topology changes, we introduce an active learning method utilizing a random forest (RF) classifier. This classifier directly predicts structure function values, integrates network behaviors across diverse topologies, and undergoes iterative refinement to enhance predictive accuracy. Importantly, the trained RF classifier can directly predict reliability for variant networks, a capability beyond the sampling method alone. Through investigating several network examples and two practical applications, the effectiveness of both proposed methods is demonstrated.
Human-Machine Cooperative Multimodal Learning Method for Cross-subject Olfactory Preference Recognition
Xia, Xiuxin, Guo, Yuchen, Wang, Yanwei, Yang, Yuchao, Shi, Yan, Men, Hong
Odor sensory evaluation has a broad application in food, clothing, cosmetics, and other fields. Traditional artificial sensory evaluation has poor repeatability, and the machine olfaction represented by the electronic nose (E-nose) is difficult to reflect human feelings. Olfactory electroencephalogram (EEG) contains odor and individual features associated with human olfactory preference, which has unique advantages in odor sensory evaluation. However, the difficulty of cross-subject olfactory EEG recognition greatly limits its application. It is worth noting that E-nose and olfactory EEG are more advantageous in representing odor information and individual emotions, respectively. In this paper, an E-nose and olfactory EEG multimodal learning method is proposed for cross-subject olfactory preference recognition. Firstly, the olfactory EEG and E-nose multimodal data acquisition and preprocessing paradigms are established. Secondly, a complementary multimodal data mining strategy is proposed to effectively mine the common features of multimodal data representing odor information and the individual features in olfactory EEG representing individual emotional information. Finally, the cross-subject olfactory preference recognition is achieved in 24 subjects by fusing the extracted common and individual features, and the recognition effect is superior to the state-of-the-art recognition methods. Furthermore, the advantages of the proposed method in cross-subject olfactory preference recognition indicate its potential for practical odor evaluation applications.
Detect Depression from Social Networks with Sentiment Knowledge Sharing
Shi, Yan, Tian, Yao, Tong, Chengwei, Zhu, Chunyan, Li, Qianqian, Zhang, Mengzhu, Zhao, Wei, Liao, Yong, Zhou, Pengyuan
Social network plays an important role in propagating people's viewpoints, emotions, thoughts, and fears. Notably, following lockdown periods during the COVID-19 pandemic, the issue of depression has garnered increasing attention, with a significant portion of individuals resorting to social networks as an outlet for expressing emotions. Using deep learning techniques to discern potential signs of depression from social network messages facilitates the early identification of mental health conditions. Current efforts in detecting depression through social networks typically rely solely on analyzing the textual content, overlooking other potential information. In this work, we conduct a thorough investigation that unveils a strong correlation between depression and negative emotional states. The integration of such associations as external knowledge can provide valuable insights for detecting depression. Accordingly, we propose a multi-task training framework, DeSK, which utilizes shared sentiment knowledge to enhance the efficacy of depression detection. Experiments conducted on both Chinese and English datasets demonstrate the cross-lingual effectiveness of DeSK.
DoubleStar: Long-Range Attack Towards Depth Estimation based Obstacle Avoidance in Autonomous Systems
Zhou, Ce, Yan, Qiben, Shi, Yan, Sun, Lichao
Depth estimation-based obstacle avoidance has been widely adopted by autonomous systems (drones and vehicles) for safety purpose. It normally relies on a stereo camera to automatically detect obstacles and make flying/driving decisions, e.g., stopping several meters ahead of the obstacle in the path or moving away from the detected obstacle. In this paper, we explore new security risks associated with the stereo vision-based depth estimation algorithms used for obstacle avoidance. By exploiting the weaknesses of the stereo matching in depth estimation algorithms and the lens flare effect in optical imaging, we propose DoubleStar, a long-range attack that injects fake obstacle depth by projecting pure light from two complementary light sources. DoubleStar includes two distinctive attack formats: beams attack and orbs attack, which leverage projected light beams and lens flare orbs respectively to cause false depth perception. We successfully attack two commercial stereo cameras designed for autonomous systems (ZED and Intel RealSense). The visualization of fake depth perceived by the stereo cameras illustrates the false stereo matching induced by DoubleStar. We further use Ardupilot to simulate the attack and demonstrate its impact on drones. To validate the attack on real systems, we perform a real-world attack towards a commercial drone equipped with state-of-the-art obstacle avoidance algorithms. Our attack can continuously bring a flying drone to a sudden stop or drift it away across a long distance under various lighting conditions, even bypassing sensor fusion mechanisms. Specifically, our experimental results show that DoubleStar creates fake depth up to 15 meters in distance at night and up to 8 meters during the daytime. To mitigate this newly discovered threat, we provide discussions on potential countermeasures to defend against DoubleStar.
Attention-based Graph ResNet for Motor Intent Detection from Raw EEG signals
Jia, Shuyue, Hou, Yimin, Shi, Yan, Li, Yang
In previous studies, decoding electroencephalography (EEG) signals has not considered the topological relationship of EEG electrodes. However, the latest neuroscience has suggested brain network connectivity. Thus, the exhibited interaction between EEG channels might not be appropriately measured via Euclidean distance. To fill the gap, an attention-based graph residual network, a novel structure of Graph Convolutional Neural Network (GCN), was presented to detect human motor intents from raw EEG signals, where the topological structure of EEG electrodes was built as a graph. Meanwhile, deep residual learning with a full-attention architecture was introduced to address the degradation problem concerning deeper networks in raw EEG motor imagery (MI) data. Individual variability, the critical and longstanding challenge underlying EEG signals, has been successfully handled with the state-of-the-art performance, 98.08% accuracy at the subject level, 94.28% for 20 subjects. Numerical results were promising that the implementation of the graph-structured topology was superior to decode raw EEG data. The innovative deep learning approach was expected to entail a universal method towards both neuroscience research and real-world EEG-based practical applications, e.g., seizure prediction.
A Natural Language-Inspired Multi-label Video Streaming Traffic Classification Method Based on Deep Neural Networks
Shi, Yan, Feng, Dezhi, Biswas, Subir
Yan Shi, Dezhi Feng, and Subir Biswas Electrical and Computer Engineering, Michigan State University, East Lansing, MI Abstract: This paper presents a deep-learning based traffic might not scale well and need updates to work under the new classification method for identifying multiple streaming video traffic conditions. Growth in video streaming traffic is arguably sources at the same time within an encrypted tunnel. The work the most significant recent change in network traffic, yet there defines a novel feature inspired by Natural Language are only a limited number of researches targeting video Processing (NLP) that allows existing NLP techniques to help streaming protocols [7]-[9]. The feature extraction method is (where multiple types of network traffic occur at the same time) described, and a large dataset containing video streaming and is left out of the existing research as well but happens quite often web traffic is created to verify its effectiveness. Results are in real-world situations. The targeted traffic type needs to be obtained by applying several NLP methods to show that the extended to cover these changes. We also show the ability to learning using deep learning methods. The trend has prompted achieve zero-shot learning with the proposed method.