Shi, Xu
Generating Synthetic Electronic Health Record (EHR) Data: A Review with Benchmarking
Chen, Xingran, Wu, Zhenke, Shi, Xu, Cho, Hyunghoon, Mukherjee, Bhramar
We conduct a scoping review of existing approaches for synthetic EHR data generation, and benchmark major methods with proposed open-source software to offer recommendations for practitioners. We search three academic databases for our scoping review. Methods are benchmarked on open-source EHR datasets, MIMIC-III/IV. Seven existing methods covering major categories and two baseline methods are implemented and compared. Evaluation metrics concern data fidelity, downstream utility, privacy protection, and computational cost. 42 studies are identified and classified into five categories. Seven open-source methods covering all categories are selected, trained on MIMIC-III, and evaluated on MIMIC-III or MIMIC-IV for transportability considerations. Among them, GAN-based methods demonstrate competitive performance in fidelity and utility on MIMIC-III; rule-based methods excel in privacy protection. Similar findings are observed on MIMIC-IV, except that GAN-based methods further outperform the baseline methods in preserving fidelity. A Python package, ``SynthEHRella'', is provided to integrate various choices of approaches and evaluation metrics, enabling more streamlined exploration and evaluation of multiple methods. We found that method choice is governed by the relative importance of the evaluation metrics in downstream use cases. We provide a decision tree to guide the choice among the benchmarked methods. Based on the decision tree, GAN-based methods excel when distributional shifts exist between the training and testing populations. Otherwise, CorGAN and MedGAN are most suitable for association modeling and predictive modeling, respectively. Future research should prioritize enhancing fidelity of the synthetic data while controlling privacy exposure, and comprehensive benchmarking of longitudinal or conditional generation methods.
ECLIPSE: Semantic Entropy-LCS for Cross-Lingual Industrial Log Parsing
Zhang, Wei, Cheng, Xianfu, Zhang, Yi, Yang, Jian, Guo, Hongcheng, Li, Zhoujun, Yin, Xiaolin, Guan, Xiangyuan, Shi, Xu, Zheng, Liangfan, Zhang, Bo
Log parsing, a vital task for interpreting the vast and complex data produced within software architectures faces significant challenges in the transition from academic benchmarks to the industrial domain. Existing log parsers, while highly effective on standardized public datasets, struggle to maintain performance and efficiency when confronted with the sheer scale and diversity of real-world industrial logs. These challenges are two-fold: 1) massive log templates: The performance and efficiency of most existing parsers will be significantly reduced when logs of growing quantities and different lengths; 2) Complex and changeable semantics: Traditional template-matching algorithms cannot accurately match the log templates of complicated industrial logs because they cannot utilize cross-language logs with similar semantics. To address these issues, we propose ECLIPSE, Enhanced Cross-Lingual Industrial log Parsing with Semantic Entropy-LCS, since cross-language logs can robustly parse industrial logs. On the one hand, it integrates two efficient data-driven template-matching algorithms and Faiss indexing. On the other hand, driven by the powerful semantic understanding ability of the Large Language Model (LLM), the semantics of log keywords were accurately extracted, and the retrieval space was effectively reduced. Notably, we launch a Chinese and English cross-platform industrial log parsing benchmark ECLIPSE- BENCH to evaluate the performance of mainstream parsers in industrial scenarios. Our experimental results across public benchmarks and ECLIPSE- BENCH underscore the superior performance and robustness of our proposed ECLIPSE. Notably, ECLIPSE both delivers state-of-the-art performance when compared to strong baselines and preserves a significant edge in processing efficiency.
mABC: multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture
Zhang, Wei, Guo, Hongcheng, Yang, Jian, Zhang, Yi, Yan, Chaoran, Tian, Zhoujin, Ji, Hangyuan, Li, Zhoujun, Li, Tongliang, Zheng, Tieqiao, Chen, Chao, Liang, Yi, Shi, Xu, Zheng, Liangfan, Zhang, Bo
The escalating complexity of micro-services architecture in cloud-native technologies poses significant challenges for maintaining system stability and efficiency. To conduct root cause analysis (RCA) and resolution of alert events, we propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), to revolutionize the AI for IT operations (AIOps) domain, where multiple agents based on the powerful large language models (LLMs) perform blockchain-inspired voting to reach a final agreement following a standardized process for processing tasks and queries provided by Agent Workflow. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. To avoid potential instability issues in LLMs and fully leverage the transparent and egalitarian advantages inherent in a decentralized structure, mABC adopts a decision-making process inspired by blockchain governance principles while considering the contribution index and expertise index of each agent. Experimental results on the public benchmark AIOps challenge dataset and our created train-ticket dataset demonstrate superior performance in accurately identifying root causes and formulating effective solutions, compared to previous strong baselines. The ablation study further highlights the significance of each component within mABC, with Agent Workflow, multi-agent, and blockchain-inspired voting being crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and achieves a significant improvement in the AIOps domain compared to existing baselines
MLAD: A Unified Model for Multi-system Log Anomaly Detection
Zang, Runqiang, Guo, Hongcheng, Yang, Jian, Liu, Jiaheng, Li, Zhoujun, Zheng, Tieqiao, Shi, Xu, Zheng, Liangfan, Zhang, Bo
In spite of the rapid advancements in unsupervised log anomaly detection techniques, the current mainstream models still necessitate specific training for individual system datasets, resulting in costly procedures and limited scalability due to dataset size, thereby leading to performance bottlenecks. Furthermore, numerous models lack cognitive reasoning capabilities, posing challenges in direct transferability to similar systems for effective anomaly detection. Additionally, akin to reconstruction networks, these models often encounter the "identical shortcut" predicament, wherein the majority of system logs are classified as normal, erroneously predicting normal classes when confronted with rare anomaly logs due to reconstruction errors. To address the aforementioned issues, we propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems. Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors. Subsequently, we revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset through appropriate vector space diffusion. Lastly, we employ a Gaussian mixture model to highlight the uncertainty of rare words pertaining to the "identical shortcut" problem, optimizing the vector space of the samples using the maximum expectation model. Experiments on three real-world datasets demonstrate the superiority of MLAD.
OWL: A Large Language Model for IT Operations
Guo, Hongcheng, Yang, Jian, Liu, Jiaheng, Yang, Liqun, Chai, Linzheng, Bai, Jiaqi, Peng, Junran, Hu, Xiaorong, Chen, Chao, Zhang, Dongfeng, Shi, Xu, Zheng, Tieqiao, Zheng, Liangfan, Zhang, Bo, Xu, Ke, Li, Zhoujun
With the rapid development of IT operations, it has become increasingly crucial to efficiently manage and analyze large volumes of data for practical applications. The techniques of Natural Language Processing (NLP) have shown remarkable capabilities for various tasks, including named entity recognition, machine translation and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various NLP downstream tasks. However, there is a lack of specialized LLMs for IT operations. In this paper, we introduce the Owl, a large language model trained on our collected Owl-Instruct dataset with a wide range of IT-related information, where the mixture-of-adapter strategy is proposed to improve the parameter-efficient tuning across different domains or tasks. Furthermore, we evaluate the performance of our Owl on the Owl-Bench established by us and open IT-related benchmarks. Owl demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.
Clinical Concept Embeddings Learned from Massive Sources of Medical Data
Beam, Andrew L., Kompa, Benjamin, Fried, Inbar, Palmer, Nathan P., Shi, Xu, Cai, Tianxi, Kohane, Isaac S.
Word embeddings have emerged as a popular approach to unsupervised learning of word relationships in machine learning and natural language processing. In this article, we benchmark two of the most popular algorithms, GloVe and word2vec, to assess their suitability for capturing medical relationships in large sources of biomedical data. Leaning on recent theoretical insights, we provide a unified view of these algorithms and demonstrate how different sources of data can be combined to construct the largest ever set of embeddings for 108,477 medical concepts using an insurance claims database of 60 million members, 20 million clinical notes, and 1.7 million full text biomedical journal articles. We evaluate our approach, called cui2vec, on a set of clinically relevant benchmarks and in many instances demonstrate state of the art performance relative to previous results. Finally, we provide a downloadable set of pre-trained embeddings for other researchers to use, as well as an online tool for interactive exploration of the cui2vec embeddings.