Not enough data to create a plot.
Try a different view from the menu above.
Shi, Taiwei
Detecting and Filtering Unsafe Training Data via Data Attribution
Pan, Yijun, Shi, Taiwei, Zhao, Jieyu, Ma, Jiaqi W.
Large language models (LLMs) are vulnerable to unsafe training data that even small amounts of unsafe data can lead to harmful model behaviors. Detecting and filtering such unsafe training data is essential for trustworthy model development. Current state-of-the-art (SOTA) approaches typically rely on training moderation classifiers which requires significant computational overhead and are limited to predefined taxonomies, making them less adaptable to evolving safety concerns. Moreover, these classifiers lack insight into the training process, limiting their effectiveness in filtering unsafe data. To address these limitations, we propose DABUF, leveraging data attribution to detect and filter unsafe training data by attributing harmful model outputs to influential training data points. DABUF enables flexible identification of various unsafe data types without predefined taxonomies. However, in practice, model outputs can be complex with combined safe linguistic features and unsafe content, leading to reduced attribution accuracy. In such cases, DABUF will integrate moderation classifiers to identify a minimal subset of unsafe training data for targeted attribution (such as jailbreak). When model outputs are relatively straightforward, DABUF uses model outputs directly as the attribution targets. We evaluate the performance on two different tasks: in filtering jailbreaking training data and in identifying and mitigating gender bias. DABUF outperforms SOTA approaches by up to 7.5\% in detection AUPRC in jailbreaking scenarios, and 44.1\% in detecting gender bias. Moreover, retraining on DABUF-filtered data leads to higher model safety across experiments, underscoring its versatility in addressing a broad spectrum of unsafe data issues.
Can Language Model Moderators Improve the Health of Online Discourse?
Cho, Hyundong, Liu, Shuai, Shi, Taiwei, Jain, Darpan, Rizk, Basem, Huang, Yuyang, Lu, Zixun, Wen, Nuan, Gratch, Jonathan, Ferrara, Emilio, May, Jonathan
Human moderation of online conversation is essential to maintaining civility and focus in a dialogue, but is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier aid moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness through a multidisciplinary lens that incorporates insights from social science. We then propose a comprehensive evaluation framework that uses this definition to asses models' moderation capabilities independently of human intervention. With our framework, we conduct the first known study Figure 1: While banning users or deleting their comments of conversational dialogue models as moderators, may push them towards echo chambers (left), conversational finding that appropriately prompted models moderation can guide users towards more can provide specific and fair feedback on constructive behavior (right). Recent developments in toxic behavior but struggle to influence users to conversational AI present an opportunity to perform this increase their levels of respect and cooperation.
Safer-Instruct: Aligning Language Models with Automated Preference Data
Shi, Taiwei, Chen, Kai, Zhao, Jieyu
Reinforcement Learning from Human Feedback (RLHF) is a vital strategy for enhancing model safety in language models. However, annotating preference data for RLHF is a resource-intensive and creativity-demanding process, while automatic generation methods face limitations in data diversity and quality. In response, we present Safer-Instruct, a novel pipeline for semi-automatically constructing large-scale preference datasets. Our approach leverages reversed instruction tuning, instruction induction, and expert model evaluation to efficiently generate high-quality preference data without human annotators. We evaluate Safer-Instruct using LLaMA for instruction induction and GPT-4 as an expert model, generating approximately 10K preference samples. Finetuning an Alpaca model on this dataset demonstrates improved harmlessness while maintaining competitive performance on conversation and downstream tasks. Safer-Instruct addresses the challenges in preference data acquisition, advancing the development of safer and more responsible AI systems. Our code and data are available at https://github.com/uscnlp-lime/safer-instruct
CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large Language Models for Data Annotation
Li, Minzhi, Shi, Taiwei, Ziems, Caleb, Kan, Min-Yen, Chen, Nancy F., Liu, Zhengyuan, Yang, Diyi
Annotated data plays a critical role in Natural Language Processing (NLP) in training models and evaluating their performance. Given recent developments in Large Language Models (LLMs), models such as ChatGPT demonstrate zero-shot capability on many text-annotation tasks, comparable with or even exceeding human annotators. Such LLMs can serve as alternatives for manual annotation, due to lower costs and higher scalability. However, limited work has leveraged LLMs as complementary annotators, nor explored how annotation work is best allocated among humans and LLMs to achieve both quality and cost objectives. We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale. Under this framework, we utilize uncertainty to estimate LLMs' annotation capability. Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline. For code implementation, see https://github.com/SALT-NLP/CoAnnotating.
Neural Story Planning
Ye, Anbang, Cui, Christopher, Shi, Taiwei, Riedl, Mark O.
Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines.