Goto

Collaborating Authors

 Shi, Min


Impact of Data Distribution on Fairness Guarantees in Equitable Deep Learning

arXiv.org Artificial Intelligence

We present a comprehensive theoretical framework analyzing the relationship between data distributions and fairness guarantees in equitable deep learning. Our work establishes novel theoretical bounds that explicitly account for data distribution heterogeneity across demographic groups, while introducing a formal analysis framework that minimizes expected loss differences across these groups. We derive comprehensive theoretical bounds for fairness errors and convergence rates, and characterize how distributional differences between groups affect the fundamental trade-off between fairness and accuracy. Through extensive experiments on diverse datasets, including FairVision (ophthalmology), CheXpert (chest X-rays), HAM10000 (dermatology), and FairFace (facial recognition), we validate our theoretical findings and demonstrate that differences in feature distributions across demographic groups significantly impact model fairness, with performance disparities particularly pronounced in racial categories. The theoretical bounds we derive crroborate these empirical observations, providing insights into the fundamental limits of achieving fairness in deep learning models when faced with heterogeneous data distributions. This work advances our understanding of fairness in AI-based diagnosis systems and provides a theoretical foundation for developing more equitable algorithms. The code for analysis is publicly available via \url{https://github.com/Harvard-Ophthalmology-AI-Lab/fairness_guarantees}.


FairDiffusion: Enhancing Equity in Latent Diffusion Models via Fair Bayesian Perturbation

arXiv.org Artificial Intelligence

Recent progress in generative AI, especially diffusion models, has demonstrated significant utility in text-to-image synthesis. Particularly in healthcare, these models offer immense potential in generating synthetic datasets and training medical students. However, despite these strong performances, it remains uncertain if the image generation quality is consistent across different demographic subgroups. To address this critical concern, we present the first comprehensive study on the fairness of medical text-to-image diffusion models. Our extensive evaluations of the popular Stable Diffusion model reveal significant disparities across gender, race, and ethnicity. To mitigate these biases, we introduce FairDiffusion, an equity-aware latent diffusion model that enhances fairness in both image generation quality as well as the semantic correlation of clinical features. In addition, we also design and curate FairGenMed, the first dataset for studying the fairness of medical generative models. Complementing this effort, we further evaluate FairDiffusion on two widely-used external medical datasets: HAM10000 (dermatoscopic images) and CheXpert (chest X-rays) to demonstrate FairDiffusion's effectiveness in addressing fairness concerns across diverse medical imaging modalities. Together, FairDiffusion and FairGenMed significantly advance research in fair generative learning, promoting equitable benefits of generative AI in healthcare.


TransFair: Transferring Fairness from Ocular Disease Classification to Progression Prediction

arXiv.org Artificial Intelligence

The use of artificial intelligence (AI) in automated disease classification significantly reduces healthcare costs and improves the accessibility of services. However, this transformation has given rise to concerns about the fairness of AI, which disproportionately affects certain groups, particularly patients from underprivileged populations. Recently, a number of methods and large-scale datasets have been proposed to address group performance disparities. Although these methods have shown effectiveness in disease classification tasks, they may fall short in ensuring fair prediction of disease progression, mainly because of limited longitudinal data with diverse demographics available for training a robust and equitable prediction model. In this paper, we introduce TransFair to enhance demographic fairness in progression prediction for ocular diseases. TransFair aims to transfer a fairness-enhanced disease classification model to the task of progression prediction with fairness preserved. Specifically, we train a fair EfficientNet, termed FairEN, equipped with a fairness-aware attention mechanism using extensive data for ocular disease classification. Subsequently, this fair classification model is adapted to a fair progression prediction model through knowledge distillation, which aims to minimize the latent feature distances between the classification and progression prediction models. We evaluate FairEN and TransFair for fairness-enhanced ocular disease classification and progression prediction using both two-dimensional (2D) and 3D retinal images. Extensive experiments and comparisons with models with and without considering fairness learning show that TransFair effectively enhances demographic equity in predicting ocular disease progression.


FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification

arXiv.org Artificial Intelligence

Addressing fairness in artificial intelligence (AI), particularly in medical AI, is crucial for ensuring equitable healthcare outcomes. Recent efforts to enhance fairness have introduced new methodologies and datasets in medical AI. However, the fairness issue under the setting of domain transfer is almost unexplored, while it is common that clinics rely on different imaging technologies (e.g., different retinal imaging modalities) for patient diagnosis. This paper presents FairDomain, a pioneering systemic study into algorithmic fairness under domain shifts, employing state-of-the-art domain adaptation (DA) and generalization (DG) algorithms for both medical segmentation and classification tasks to understand how biases are transferred between different domains. We also introduce a novel plug-and-play fair identity attention (FIA) module that adapts to various DA and DG algorithms to improve fairness by using self-attention to adjust feature importance based on demographic attributes. Additionally, we curate the first fairness-focused dataset with two paired imaging modalities for the same patient cohort on medical segmentation and classification tasks, to rigorously assess fairness in domain-shift scenarios. Excluding the confounding impact of demographic distribution variation between source and target domains will allow clearer quantification of the performance of domain transfer models. Our extensive evaluations reveal that the proposed FIA significantly enhances both model performance accounted for fairness across all domain shift settings (i.e., DA and DG) with respect to different demographics, which outperforms existing methods on both segmentation and classification. The code and data can be accessed at https://ophai.hms.harvard.edu/datasets/


EANet: Expert Attention Network for Online Trajectory Prediction

arXiv.org Artificial Intelligence

Trajectory prediction plays a crucial role in autonomous driving. Existing mainstream research and continuoual learning-based methods all require training on complete datasets, leading to poor prediction accuracy when sudden changes in scenarios occur and failing to promptly respond and update the model. Whether these methods can make a prediction in real-time and use data instances to update the model immediately(i.e., online learning settings) remains a question. The problem of gradient explosion or vanishing caused by data instance streams also needs to be addressed. Inspired by Hedge Propagation algorithm, we propose Expert Attention Network, a complete online learning framework for trajectory prediction. We introduce expert attention, which adjusts the weights of different depths of network layers, avoiding the model updated slowly due to gradient problem and enabling fast learning of new scenario's knowledge to restore prediction accuracy. Furthermore, we propose a short-term motion trend kernel function which is sensitive to scenario change, allowing the model to respond quickly. To the best of our knowledge, this work is the first attempt to address the online learning problem in trajectory prediction. The experimental results indicate that traditional methods suffer from gradient problems and that our method can quickly reduce prediction errors and reach the state-of-the-art prediction accuracy.


Deep Attributed Network Representation Learning via Attribute Enhanced Neighborhood

arXiv.org Artificial Intelligence

Attributed network representation learning aims at learning node embeddings by integrating network structure and attribute information. It is a challenge to fully capture the microscopic structure and the attribute semantics simultaneously, where the microscopic structure includes the one-step, two-step and multi-step relations, indicating the first-order, second-order and high-order proximity of nodes, respectively. In this paper, we propose a deep attributed network representation learning via attribute enhanced neighborhood (DANRL-ANE) model to improve the robustness and effectiveness of node representations. The DANRL-ANE model adopts the idea of the autoencoder, and expands the decoder component to three branches to capture different order proximity. We linearly combine the adjacency matrix with the attribute similarity matrix as the input of our model, where the attribute similarity matrix is calculated by the cosine similarity between the attributes based on the social homophily. In this way, we preserve the second-order proximity to enhance the robustness of DANRL-ANE model on sparse networks, and deal with the topological and attribute information simultaneously. Moreover, the sigmoid cross-entropy loss function is extended to capture the neighborhood character, so that the first-order proximity is better preserved. We compare our model with the state-of-the-art models on five real-world datasets and two network analysis tasks, i.e., link prediction and node classification. The DANRL-ANE model performs well on various networks, even on sparse networks or networks with isolated nodes given the attribute information is sufficient.