Goto

Collaborating Authors

 Shi, Meilin


The KnowWhereGraph Ontology

arXiv.org Artificial Intelligence

KnowWhereGraph is one of the largest fully publicly available geospatial knowledge graphs. It includes data from 30 layers on natural hazards (e.g., hurricanes, wildfires), climate variables (e.g., air temperature, precipitation), soil properties, crop and land-cover types, demographics, and human health, various place and region identifiers, among other themes. These have been leveraged through the graph by a variety of applications to address challenges in food security and agricultural supply chains; sustainability related to soil conservation practices and farm labor; and delivery of emergency humanitarian aid following a disaster. In this paper, we introduce the ontology that acts as the schema for KnowWhereGraph. This broad overview provides insight into the requirements and design specifications for the graph and its schema, including the development methodology (modular ontology modeling) and the resources utilized to implement, materialize, and deploy KnowWhereGraph with its end-user interfaces and public query SPARQL endpoint.


Uncovering Regional Defaults from Photorealistic Forests in Text-to-Image Generation with DALL-E 2

arXiv.org Artificial Intelligence

Regional defaults describe the emerging phenomenon that text-to-image (T2I) foundation models used in generative AI are prone to over-proportionally depicting certain geographic regions to the exclusion of others. In this work, we introduce a scalable evaluation for uncovering such regional defaults. The evaluation consists of region hierarchy--based image generation and cross-level similarity comparisons. We carry out an experiment by prompting DALL-E 2, a state-of-the-art T2I generation model capable of generating photorealistic images, to depict a forest. We select forest as an object class that displays regional variation and can be characterized using spatial statistics. For a region in the hierarchy, our experiment reveals the regional defaults implicit in DALL-E 2, along with their scale-dependent nature and spatial relationships. In addition, we discover that the implicit defaults do not necessarily correspond to the most widely forested regions in reality. Our findings underscore a need for further investigation into the geography of T2I generation and other forms of generative AI.


Here Is Not There: Measuring Entailment-Based Trajectory Similarity for Location-Privacy Protection and Beyond

arXiv.org Artificial Intelligence

While the paths humans take play out in social as well as physical space, measures to describe and compare their trajectories are carried out in abstract, typically Euclidean, space. When these measures are applied to trajectories of actual individuals in an application area, alterations that are inconsequential in abstract space may suddenly become problematic once overlaid with geographic reality. In this work, we present a different view on trajectory similarity by introducing a measure that utilizes logical entailment. This is an inferential perspective that considers facts as triple statements deduced from the social and environmental context in which the travel takes place, and their practical implications. We suggest a formalization of entailment-based trajectory similarity, measured as the overlapping proportion of facts, which are spatial relation statements in our case study. With the proposed measure, we evaluate LSTM-TrajGAN, a privacy-preserving trajectory-generation model. The entailment-based model evaluation reveals potential consequences of disregarding the rich structure of geographic space (e.g., miscalculated insurance risk due to regional shifts in our toy example). Our work highlights the advantage of applying logical entailment to trajectory-similarity reasoning for location-privacy protection and beyond.


Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019

arXiv.org Artificial Intelligence

One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution.